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Abstract

We present a study on how people use size modifiers when
referring to visible objects. We find strong evidence that the
selection of modifiers like tall, thin, and big is brought about
by several interacting factors, including how a target object’s
physical dimensions differ from another object of the same
type, and the relationship between the target object’s individ-
ual dimensions. Findings from this study are used to inform
the design of a referring expression generation algorithm ca-
pable of referring to objects naturally, providing a further link
between visual cues and corresponding linguistic forms.
Keywords: size adjectives; size modifiers; visual features; re-
ferring expression generation

Introduction
Over the past two decades, detailed psycholinguistic mod-
els of utterance planning have emerged (Ferreira & Swets,
2002; Griffin & Bock, 2000; Levelt, 1989; Levelt, Roelofs,
& Meyer, 1999). These models seek to explain the relation-
ship between thought and language, connecting internal men-
tal processes to the timing and structure of produced expres-
sions. A significant amount of recent work has focused on
the relationship between the visual world and the references
used to identify items therein (Bock, Irwin, Davidson, & Lev-
elt, 2003; Henderson & Ferreira, 2004), but this research has
been underutilized in computational approaches to modeling
a language generation process (Dale & Reiter, 1995; Krah-
mer, van Erk, & Verleg, 2003).

It has been well established that dimensional modifiers,
such as those denoting size, play a central role in reference
to objects in a visual scene, particularly when objects of
the same type are in the scene (Brown-Schmidt & Tanen-
haus, 2006; Sedivy, 2003). This property of reference is
not only important for work in referring expression gener-
ation (REG) that uses size modifiers (Kelleher, Costello, &
Genabith, 2005; van Deemter, 2004; Viethen & Dale, 2008),
but it offers a clear link between language generation and
machine vision techniques that provide detailed information
about an object’s physical dimensions (Friedland, Jantz, &
Rojas, 2005; Zheng, Yuille, & Tu, 2010). Systematically ma-
nipulating the visual feature of size to develop an account of
how size is used in reference furthers the goal of developing
a grounded semantic core for natural language (Gorniak &
Roy, 2004), tying visual perception to linguistic reference.

In this study, we seek to better understand the relationship
between an object’s dimensions and the words used to iden-
tify it. We evaluate three hypotheses that explore this relation-
ship. Our results suggest that the selection of size modifiers is
governed by several interacting and competing factors, with
preferences for overall size modifiers (“big”, “small”) versus

individual-axis size modifiers (“tall”, “thin”) emerging in dif-
ferent contexts. Additionally, we are able to confirm earlier
findings on modifier preferences grounded in physical object
properties (Hermann & Deutsch, 1976), and further build on
these results. This research will inform a natural language
generation (NLG) system that refers to real-world items nat-
urally, and provides a fundamental connection linking natural
language generation to a vision-based input.

Background and Motivation
Methods for reasoning about the basic properties common to
all visual scenes have isolated the properties of color, loca-
tion, size, and type as the building blocks for visual refer-
ence (Roy & Pentland, 2002; Skočaj et al., 2007). Detailed
accounts of several of these factors have been developed, in-
cluding how to produce natural expressions with appropriate
use of color modifiers (Mojsilović, 2005) and spatial descrip-
tions (Gorniak & Roy, 2004; Kelleher et al., 2005).

However, our knowledge of how people use size modifi-
cation to refer to an object is extremely limited. There has
been considerable research on the behavior of size modi-
fiers for other purposes, such as the semantics of dimensional
modifiers (Bierwisch & Lang, 1989; Eilers, Oller, & Elling-
ton, 1974; Tucker, 1998; Morzycki, 2009), the acquisition
of the meaning of such modifiers (Bartlett, 1976), when di-
mensional modifiers are used (Brown-Schmidt & Tanenhaus,
2006; Sedivy, Tanenhaus, Chambers, & Carlson, 1999), and
how language reflects dimensional properties such as height
and width (Landau & Jackendoff, 1993; Landau, 2001). We
also know roughly how to choose between different forms of
a size adjective (“larger”, “largest”) (van Deemter, 2004).

A primary open question this research leaves is whether
people distinguish objects by focusing on one single dimen-
sion or by combining dimensions, and how these are realized
as surface forms. Given information about an object’s height
and width, it is unclear how it will be referred to.

Most REG algorithms presuppose that referents are indi-
viduated using “absolute” properties, whose applicability to
a referent does not depend on the context in which the refer-
ent appears. Size is no exception. Dale and Reiter (1995), for
example, let their algorithms start from a Knowledge Base in
which some objects are listed explicitly as large, while others
are listed as small. Van Deemter (2000, 2004) modifies this
procedure by storing actual sizes (e.g., in centimeters) in the
Knowledge Base, making the decision of whether something
is larger or smaller context dependent. However, neither of
these approaches pays attention to the choice between words
like “big” and “tall”; presumably, this choice is made by a



later module that translates properties into words.
But these words may mean something very different and

reflect different properties of a referent. For example, con-
sider an object A that is taller and wider than an object B. It
is true that A is taller than B; it is true that A is wider than B;
it is also true that A is bigger than B. All three words may be
appropriate to refer to A, and we do not know whether there
is a preference for one over the other. Landau and Jackend-
off (1993) point out that a modifier like “big” selects different
dimensions depending on the nature of the object, and tends
to be used in cases where an object is large in either two or
all three of its dimensions, while modifiers like “thick” and
“thin” may be applied when an object extends in a single di-
mension.

Some information about what to expect in a computa-
tional model of size modification is provided by Hermann and
Deutsch (1976), who find that subjects are more likely to use
words like “fat” rather than “short” when a candle is much
fatter but only a little shorter than a comparator. In another
vein of computational work, Roy (2002) finds that words like
“small” and “large” cluster together, but that “tall” is placed
in a separate cluster. A second clustering approach based on
visual properties finds that “thin” is associated most strongly
with surface area, and only weakly with height-to-width ratio.

These findings suggest that the dimensional properties of
a referent may be reasoned about to produce different kinds
of expressions. An REG algorithm that generates natural ref-
erence to visible objects should be equipped to handle this
variation, and building such an algorithm can aid in modeling
how people use size modification.

We therefore set out to examine how the words proposed to
refer to specific axes, like “tall” and “thick”, are used differ-
ently than words proposed to refer to overall size, like “large”
and “small”. The first type we will call individual-axis size
modifiers and the second overall size modifiers.1 Our hy-
potheses are designed to formalize aspects of size reference
that have been implied by earlier work (e.g., Landau and Jack-
endoff (1993)), but have not yet been systematically tested.
This provides a basis from which to design an REG algorithm
that refers to an object’s size.

Experiments
We examine what happens when a referent object is different
in size from a comparator object (1) along a single axis; (2)
along two axes, in the same direction (both axes larger or both
smaller); and (3) along two axes, in opposite directions (one
axis larger, one smaller). Our hypotheses are listed below.

H1 When a single dimension differs between a referent object
and another object of the same type, an individual-axis size
modifier will be produced more often than an overall size
modifier.

H2 When two dimensions differ in the same direction between
a referent object and another object of the same type, an

1Note that individual-axis size modifiers may occasionally pick
out more than one axis, e.g., as in the word “thick”.

overall size modifier will be produced more often than an
individual-axis size modifier.

H3 When two dimensions differ in opposite directions be-
tween a referent object and another object of the same type,
an individual-axis size modifier will be produced more of-
ten than an overall size modifier.

It is relatively straightforward to write a deterministic algo-
rithm capturing what we predict the majority of people will
do when there is a difference in at least one dimension be-
tween two similar objects, and we sketch such an algorithm
in Figure 1. Note that some aspects are still left unspecified,
and the algorithm does not address how large a difference
must be in order to be salient – clearly, some differences be-
tween referent and comparator may be too small to elicit a
corresponding modifier. This is an area for future work.

Lines 2–3 and 9–10 represent H2, returning an overall size
modifier depending on the differences between dimensions.
Lines 2, 4–7; and 9, 11–14 roughly represent H3, and call
to a second function motivated by Hermann and Deutsch
(1976), LARGEST-DIMENSION-DIFF, which returns the di-
mension with the greater difference. Lines 2, 8; 9, 15; and
16–18 represent H1. The final size modifier structure is sent
to the GENERATE function, requesting an overall size modi-
fier (<over>), or an individual-axis size modifier picking out
a specific axis (<ind, width> or <ind, height>), along with
whether the modifier should capture a larger (+) or smaller (-)
difference. Thus, for example, (<over>, +) could be realized
as “large” or “big”, while (<ind, height>, -) could be realized
as “short”.

r = referent object, d = object of the same type (comparator)
rh, rw = referent height, referent width
dh, dw = comparator height, comparator width
01. GenSizeMod(r, d):
02. if rh > dh:
03. if rw > dw: generate(<over>, +)
04. elif rw < dw:
05. if largest-dimension-diff(rh, rw, dh, dw) == width:
06. generate(<ind, width>, -)
07. else: generate(<ind, height>, +)
08. else: generate(<ind, height>, +)
09. elif rh < dh:
10. if rw < dw: generate(<over>, -)
11. elif rw > dw:
12. if largest-dimension-diff(rh, rw, dh, dw) == width:
13. generate(<ind, width>, +)
14. else: generate(<ind, height>, -)
15. else: generate(<ind, height>, -)
16. else:
17. if rw > dw: generate(<ind, width>, +)
18. elif rw < dw: generate(<ind, width>, -)

Figure 1: Initial algorithm for generating size modifiers.

However, we expect that this is not the whole story, and
return to this issue in the last section.

We consider size differences in two different gradations:
A small negative difference (-, 10/11th size) or a small posi-
tive difference (+, 11/10th size) between the axis of the refer-
ent and the corresponding axis of the comparator; and a large
negative difference (- -, 4/5th size) or large positive difference



Figure 2: Example stimuli: sponges (++/- -), books (-/0),
boards (- -/- -), and brownies (++/0).

(++, 5/4th size) between the two axes. These are operational-
izations of what it means for height and width to be different,
and serve as a starting point to sample the space of height and
width contrasts. Values for these measurements are provided
in Table 1.

The stimuli in this study were photographs of real-world
objects, physically cut and shaped into different sizes. This
follows work in developing computational models that bridge
the symbolic realm of language with the physical realm of
real-world referents (Herzog & Wazinski, 1994; Roy & Re-
iter, 2005; Tanenhaus, Spivey-Knowlton, Eberhard, & Se-
divy, 1995).

Method

Participants 95 subjects collected using Amazon’s Me-
chanical Turk (Amazon, 2008) were paid for their participa-
tion. 87 of these participants labeled themselves as “Native”
or “Fluent”. From this set, we randomly chose a subset of
60 total participants, spread evenly as groups of 20 in each of
our three experiments.

Materials Several different objects were used to elicit size
modifiers. These objects were sponges, boards, books, and
brownies. All objects were rectilinear solids, varied along
their height and width dimensions. The objects were inter-
mixed with fillers, discussed in further detail below.

Each object appeared to the right of a comparator object of
the same type (see Figure 2). The target object could appear
in 24 different sizes, created by combinations of 5 gradations
relative to the comparator object on both the object’s hori-
zontal and vertical axes: smaller (- -); a little smaller, (-); no
difference (0); a little larger, (+); and larger, (++). The 25th
possible size, no difference from the comparator on both the
horizontal and vertical axes, was not included. The differ-
ence between the height and width of the target object itself
was different across the different objects. All target objects
had the same relative ratio of difference from the comparator
on each axis.

Design We conducted three experiments, addressing each
of our hypotheses. The design for each was dimension (2:
height, width) x degree of difference (2: small, large) x direc-
tion of difference (2: bigger, smaller).

EXPERIMENT 1: DIFFERENCES OF DEGREE, SINGLE
DIMENSION. Responses were elicited for objects with
height/width combinations of ++/0, 0/++, +/0, 0/+, -/0, 0/-,
- -/0 and 0/- - (8 conditions). Each target item differed from
its comparator item in one dimension.

EXPERIMENT 2: DIFFERENCES OF DEGREE, MATCHING
ACROSS DIMENSIONS. Responses were elicited for objects
with height/width combinations of ++/++, ++/+, +/++, +/+, -
-/- -, - -/-, -/- - and -/- (8 conditions). Each target item differed
from its comparator item in two dimensions and in the same
direction for each; the target item was either bigger overall or
smaller overall than the comparator.

EXPERIMENT 3: DIFFERENCES OF DEGREE, DIFFERENT
POLARITIES ACROSS DIMENSIONS. Responses were elicited
for objects with height/width combinations of ++/- -, - -/++,
++/-, -/++, +/- -, - -/+, +/- and -/+ (8 conditions). Each target
item differed from its comparator item in two dimensions and
in the opposite direction for each; the target item had one axis
bigger and one axis smaller than the comparator.

For each experiment, we followed a Latin square design
where all participants saw each of the four object types, with
two examples per condition. This yielded 16 experimental
stimuli per participant. Each experiment had two subgroups,
where one half (10 participants) saw 2 stimuli per condition,
and the other half (10 participants) saw the other 2 stimuli per
condition.

Stimuli in each experiment were intermixed with the 24
filler pictures, consisting of spatulas, Legos, and shoes. Spat-
ulas appeared in groups of three and Legos and shoes ap-
peared as sets of two. Most objects in filler conditions could
be distinguished using part-whole phrases, e.g., “the one with
the red Lego” or “the shoe with the laces untied”. In total,
each subject provided responses for 40 object pictures. Each
picture was 400 pixels wide x 300 pixels high, and could be
enlarged to 700 x 525 by clicking on it. Pictures were pre-
sented in random order, and experimental groups were as-
signed randomly.

Procedure Instructions informed participants that they had
been chosen as “the thrower”, tossing objects down a tube
to a person below, and their goal was to clearly identify the
object on the right so that the person below could pick it up.

Responses were manually corrected for spelling and nor-
malized for punctuation and capitalization. For each expres-
sion, we annotate the modifiers as being an individual-axis
size modifier (ind.), overall size modifier (over.), or other.
Each single-dimensional modifier was annotated by three
postgraduates as being a height modifier or a width modifier.
We use the annotations from the annotator who had the high-
est agreement with the other two, with a Cohen’s kappa of
0.90 (95% CI, 0.87–0.94) and 0.71 (0.66–0.76). Table 2 lists
the vocabulary and modifier types based on this data. Most
base modifiers have corresponding comparative (ending in
-er) and superlative (ending in -est) forms.

Results
Results are based on the 320 responses for each experiment.
Each response to the test stimuli is counted as either including
or not including an individual-axis size modifier (0 or 1) and
including or not including an overall size modifier (0 or 1).
Note that the two are not exclusive. For each participant, we



Table 1: Measurements for objects along each axis (in cm).

object height width
++ + 0 - - - ++ + 0 - - -

brownies 11.25 9.90 9.00 8.18 7.20 11.25 9.90 9.00 8.18 7.20
sponges 6.25 5.50 5.00 4.54 4.00 12.50 11.00 10.00 9.09 8.00
books 25.00 22.00 20.00 18.18 16.00 6.25 5.50 5.00 4.55 4.00
boards 19.05 16.76 15.24 13.84 12.19 25.4 22.35 20.32 18.47 16.26

Table 2: Size vocabulary.

ind.
height: high long narrow short skinny slender

squat tall thick thin
width: fat lengthy long narrow skinny slim

thick thin wide
over. big large small

Table 3: Example responses.

condition object expression
h++w++ books taller fatter book
h+w- - sponges taller sponge
h- -w++ boards the shorter and slightly wider

board with a diagonal top side
h0w+ brownies longer brownie
h- -w- - boards smaller board

sum the total number of responses with each type of modifier.
This provides two sets for a two-tailed paired t-test in each of
our analyses.

Examples of normalized responses are given in Table 3.
Table 4 provides the proportions of responses that included an
individual-axis size modifier, an overall size modifier, both,
or neither for each experiment.

H1: When a single dimension differs between a referent
object and another object of the same type, an individual-
axis size modifier will be produced more often than an
overall size modifier.

We do not find a strong trend to include individual-axis
size modifiers, with such modifiers occurring in an average of
8.4 responses per participant, compared to 6.1 responses on
average containing an overall size modifier. The difference is
not significant (t = 1.382, d f = 19, p = 0.183).2

H2: When two dimensions differ in the same direction
between a referent object and another object of the same

Table 4: Proportion of responses including either 1+
individual-axis size modifiers, 1+ overall size modifiers, both,
or neither.

Experiment ind. over. both neither
1 50.0% 35.6% 2.5% 11.9%
2 29.1% 65.9% 4.7% 0.3%
3 70.6% 8.8% 6.3% 14.4%

2Preliminary analysis on a larger dataset suggests that this trend
may become significant, and we leave this for future work.

type, an overall size modifier will be produced more often
than an individual-axis size modifier.

We find a strong trend to include overall size modifiers,
with such modifiers occurring in an average of 11.3 responses
per participant. Individual-axis size modifiers occur in an av-
erage of 5.4 responses. The difference in this distribution is
significant (t =−4.914, d f = 19, p < .001).

H3: When two dimensions differ in opposite directions
between a referent object and another object of the same
type, an individual-axis size modifier will be produced
more often than an overall size modifier.

We find that when two dimensions differ in opposite direc-
tions, individual-axis size modifiers are chosen in an average
of 12.3 responses per participant, while overall size modifiers
are chosen in an average of 2.4 responses. The difference in
this distribution is significant (t = 8.866, d f = 19, p < .001).

Based on these results, we can confirm Hypotheses 2 and
3. Overall size modifiers tend to be used when both axes
are different from a comparator in the same direction, and
individual-axis size modifiers tend to be used when both axes
are different from a comparator in opposite directions. Re-
sults are significant at α = .01. We cannot reject a null hy-
pothesis in favor of Hypothesis 1; we do not see a signifi-
cant difference in the distribution of size modifier types when
a single axis is different between a target and a comparator.
Further factors that may be affecting participant responses are
discussed in the next section.

We have illustrated some basic principles of how people
use size in reference. However, these experiments also pro-
vide much richer information on how people use size. One
immediate question these findings leave is whether it is com-
mon to include two individual-axis modifiers, each referring
to a separate axis, when the objects have differences of de-
gree, different polarities across dimensions (Experiment 3).
We find that this occurs in a minority of responses (mean =
4.8), while it is significantly more common (mean = 11.2) to
include just one individual-axis size modifier, an overall size
modifier, or neither (t =−4.292, d f = 19, p < .001).

We can also confirm the findings in Hermann and Deutsch
(1976). Based on responses to Experiment 2 and Experiment
3, in conditions where there is a large difference and a small
difference (++/+, +/++, ++/-, -/++, - -/-, -/- -, - -/+, +/- -), if
an individual-axis size modifier is chosen, that modifier will
refer to the larger difference more often than the smaller dif-
ference (mean for large difference = 3.4; small difference =
2.6, t = 3.629, d f = 38, p < .001).
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Figure 3: Count of overall size modifiers for different
height/width ratios in Experiment 1 (A) and Experiment 2
(B), with linear regression. Ratios shown are for the largest
axis divided by the smaller axis.

Further Analysis
This data supports the idea that the selection of size modifier
is in a large part determined by dimensional differences be-
tween an object and another object of the same type, with a
difference along two axes in different directions correspond-
ing to size modifiers like “tall” and “thin”, and a difference
along two axes in the same direction corresponding to size
modifiers like “small” and “big”.

These experiments have also shed some light on some of
the other factors that may affect the selection of size modifier.
One trend that emerges in the data is the relationship between
the selection of individual-axis or overall size modifier and
the ratio between the height and width of the target object it-
self. Although we did not design the study to test this aspect,
our data indicate that the closer the object is to a square shape,
e.g., the smaller the difference between height and width, the
more likely participants are to use an overall size modifier
like big or small. Figure 3 illustrates this trend, where the x-
axis is the ratio between the larger axis (height or width) and
the smaller axis (height or width) for each stimulus, and the
y-axis is the number of responses to the stimulus that include
an overall size modifier. In the data from Experiment 2, this
trend is quite strong, r2 = 0.95 (p < .001). Across conditions
with only height or width differing from the comparator ob-
ject (Experiment 1) – the conditions where we did not find a
tendency to use overall size modifiers – there is also a trend,
r2 = 0.57 (p < .001). Further testing is necessary to examine
this effect.

This suggests that the selection of individual versus overall
size modifier may be influenced by the difference in height
and width from the comparator object as well as the differ-
ence between height and width of the target object itself.
Individual-axis size modifiers may be used when only one
axis of the target is different from the comparator, however, as
the axes of the target itself converge in size, there is a marked
increase in preference for overall size modifiers.

We also find a preference to use height modifiers over
width modifiers, across the three experiments (mean for
height = 6.3, width = 4.7; t = 4.409, d f = 59, p < .001). This
may reflect that the objects are presented side by side, their
heights directly comparable. This brings to light another facet

of how the dimensional properties of objects may be reasoned
about in a computational model, taking into account a target
object’s position with respect to a comparator when selecting
a size modifier type.

An obvious area for further analysis concerns the determin-
ism of the size algorithm. The majority of our data comports
with the algorithm sketched in Figure 1, however, this data is
probabilistic; the algorithm is not. Assigning probabilities to
each of the conditional statements may help to better capture
how people use size modification.

Implications and Future Research
This study suggests that the selection of size modifier when
referring to real-world objects in the presence of another ob-
ject is influenced by at least two factors:

1. Whether one or both axes differ from a comparator.
2. Which axis is the most different from a comparator.

And may be influenced by two further factors:

1. The location of the target object relative to the comparator.
2. How similar in size the two axes of the target object are.

In future work, we hope to explore our post-hoc findings
and refine the algorithm, developing mechanisms for reason-
ing about the relative size difference between dimensions of
the referent object, and including information about where
the referent object is placed relative to a comparator. Extend-
ing this task to elicit responses from more participants may
be used to assign weights to each of the conditions currently
in place, and provide the size algorithm with a probability
distribution over different possible surface forms. A better
understanding of when a difference is small enough not to
be salient would help connect this algorithm more closely to
a visual input, placing constraints on when the conditional
statements outlined above apply.

This research reasons about the interplay between two di-
mensions, height and width. Scaling up to three dimensions
would help further develop a model of how size modifiers are
used in the real world. It may be the case that the patterns of
individual-axis and overall size modifiers change when there
is a third visible dimension available. We also hope to ad-
dress situations where there are several similar objects, and
situations where the target referent is a set of objects. Further
work may also examine how this research extends to other
kinds of object shapes; this study has focused on rectilin-
ear solids, but whether modifiers pick out the axes for height,
width, and depth in less rectangular objects, or objects with
irregular shapes, remains an open question.
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