
Two Approaches for Generating Size Modifiers

Margaret Mitchell
University of Aberdeen

Aberdeen, Scotland, U.K.
m.mitchell@abdn.ac.uk

Kees van Deemter
University of Aberdeen

Aberdeen, Scotland, U.K.
k.vdeemter@abdn.ac.uk

Ehud Reiter
University of Aberdeen

Aberdeen, Scotland, U.K.
e.reiter@abdn.ac.uk

Abstract

This paper offers a solution to a small prob-
lem within a much larger problem. We focus
on modelling how people use size in reference,
words like “big” and “tall”, which is one piece
within the much larger problem of how people
refer to visible objects. Examining size in iso-
lation allows us to begin untangling a few of
the complex and interacting features that af-
fect reference, and we isolate a set of features
that may be used in a hand-coded algorithm or
a machine learning approach to generate one
of six basic size types. The hand-coded al-
gorithm generates a modifier type with a high
correspondence to those observed in human
data, and achieves 81.3% accuracy in an en-
tirely new domain. This trails oracle accuracy
for this task by just 8%. Features used by the
hand-coded algorithm are added to a larger set
of features in the machine learning approach,
and we do not find a statistically significant
difference between the precision and recall of
the two systems. The input and output of
these systems are a novel characterization of
the factors that affect referring expression gen-
eration, and the methods described here may
serve as one building block in future work
connecting vision to language.

1 Introduction

The task of referring expression generation (REG)
has often been contextualized as a problem of gener-
ating uniquely identifying reference to visible items.
Properties such asCOLOR, SIZE, LOCATION, and
ORIENTATION have been treated as exemplars of at-
tributes used to distinguish a referent (Dale and Re-
iter, 1995; Krahmer et al., 2003; van Deemter, 2006;

Gatt and Belz, 2008). This paper is no exception.
However, we approach the task of REG by exam-
ining in depth what it means to uniquely identify
something that is visible. We specifically address the
attribute ofsizeand explore ways to connect the di-
mensional properties of real-world objects to surface
forms used by people to pick out a referent. This
work contributes to recent research examining natu-
ralistic reference in visual domains explicitly (Kelle-
her et al., 2005; Viethen and Dale, 2010; Koolen et
al., 2011).

Traditionally, to create an algorithm for the gen-
eration of reference, one considers a set of different
properties and develops ways to decide which prop-
erties to include in a final surface string. This may
be considered abreadth-basedmethodology, where
many properties are considered, but the details of
how those properties are input to the algorithm is
left unspecified. Here, we begin creating an algo-
rithm for the generation of naturalistic reference by
considering a single property – size – and tracing
how it is realized based on a variety of different in-
puts and outputs. This we will call adepth-based
methodology. This is a departure from previous ap-
proaches to the construction of an REG algorithm.
Instead of a more general-purpose algorithm, a small
set of abstract semantic types are mapped to a vari-
ety of surface forms. This allows us to understand
the task of referring expression generation at a fine-
grained level, analyzing the specific visual charac-
teristics that need to be considered in order to gener-
ate reference similar to that produced by people.

The algorithm is developed for the microplanning
stage of a natural language generation system (Re-
iter and Dale, 2000), generating a size type that di-
rectly informs lexical choice and surface realization

of a final string. Comparisons made by the algorithm
may also be represented as features within classifiers
that predict size type, and so we compare the size al-
gorithm with such a method, using decision trees to
model human participants’ selection of size modi-
fiers.

We introduce two broad size classes,individuat-
ing size modifiers andoverall size modifiers.Indi-
viduatingsize modifiers pick out specific configura-
tions of object axes.Overall size modifiers identify
the overall size of an object. This follows distinc-
tions made in psycholinguistic work on size (Her-
mann and Deutsch, 1976; Landau and Jackendoff,
1993) that until now have not been formalized. Each
class contains several modifier types, and these map
to sets of modifier surface forms.

2 Background

One of the most common algorithms for the gener-
ation of referring expressions is Dale and Reiter’s
1995 Incremental Algorithm. This algorithm ana-
lyzes acontext set, which is represented as a series
of <attribute:value> pairs that apply to each item
in a scene. The context set is made up of the refer-
ent and thecontrast set, the group of other items in
the scene, or thedistractors. The algorithm reasons
over an ordered list of attributes (the preference or-
der) to determine which attributes rule out at least
one distractor. Chosen<attribute:value> pairs are
added to adistinguishing description, and the algo-
rithm stops once all members of the contrast set have
been ruled out. The distinguishing description can
then be realized as a referring expression, for exam-
ple, (<COLOR:red>, <SIZE:big>, <TYPE:lamp>)
may be realized as “big red lamp”. Krahmer et
al. (2003) follow a comparable procedure, utilizing
a graph-based algorithm that relies on edge costs
rather than a preference order, which can generate
different kinds of expressions depending on how the
costs are assigned. Both of these approaches treat
size as a simple attribute, with its basic form defined
as input. As such, whether to generate an expres-
sion like “the big tortoise”, “the fat tortoise” or “the
tall tortoise” is left to other stages of the generation
process.

Such approaches may be further refined by rea-
soning about the semantic content of each property

Type Axis Polarity

Individuating

(<ind,y>, 1) y +
(<ind,y>, 0) y -
(<ind,x>, 1) x +
(<ind,x>, 0) x -

Overall
(<over>, 1) x,y +
(<over>, 0) x,y -

Table 1: Size types.

Type Examples
(<ind,y>, 1) taller thicker longer
(<ind,y>, 0) shorter thinner short
(<ind,x>, 1) longer thicker wider
(<ind,x>, 0) thinner shorter narrower
(<over>, 1) larger bigger big
(<over>, 0) smaller small smallest

Table 2: Top three surface forms for each size category in
the size corpus.

relevant to the scene. For example, with an attribute
like SIZE, we know that the dimensional properties
of the referent itself must be analyzed in order to de-
termine what kind of modifier to produce. Hermann
and Deutsch (1976) show that when people are pre-
sented with an object with two axes of different sizes
than a distractor’s, they are more likely to refer to the
axis with the larger difference. Landau and Jackend-
off (1993) discuss how a modifier like “big” selects
different dimensions depending on the nature of the
object, and tends to be used in cases where an object
is large in either two or all three of its dimensions,
while modifiers like “thick” and “thin” may be ap-
plied when an object extends in a single dimension.
Brown-Schmidt and Tanenhaus (2006) and Sedivy
et al. (1999) document that dimensional modifiers
are likely to be used in visual scenes when there is
another object of the same type as the target referent.

3 Predicting Size Types

Within each broad size class, we define several size
types. Individuating size modifiers refer to at least
one axis, and here we focus on thex-axis, running
horizontally across an object (width), and they-axis,
running vertically across an object (height). There
are also different polarities for each type, with words
like “tall” and “big” denoting a positive polarity (1),
and words like “small” and “thin” denoting a nega-
tive polarity (0). The six abstract size types based
on these distinctions are listed in Table 1, and a few

Figure 1: Example stimuli in the size corpus (Mitchell et
al., 2011a).

examples of corresponding surface forms are listed
in Table 2. These types may be used to generate
different surface realizations from the same underly-
ing semantic form, for example, (<ind,y>, 0) may
be used to produce adjectives (“the short box”), rel-
ative clauses (“that is shorter”), and prepositional
phrases (“with less height”). We refer to these differ-
ent kinds of constituents using the broad termmodi-
fier.

We predict modifiers according to the proposed
classes in two domains: A study that specifically
elicits size modification (Mitchell et al., 2011b) (the
size corpus), and a corpus of instructive reference
available from Mitchell et al. (2010) (the craft cor-
pus). The size corpus informs the design of the size
algorithm and serves as training data for the decision
tree models. Example stimuli are given in Figure 1.
The algorithm and the decision trees are then tested
on a new domain, the craft corpus.

The size algorithm reasons about the difference in
the height and width axes between a referent and a
distractor to generate a single size modifier type. It
is constructed based on the findings listed in Figure
2, and we discuss the algorithm in further detail in
the next section. The classifiers use a set of size fea-
tures that characterize each image, as well as a set
of features reflecting the comparisons made in the
hand-coded algorithm. This is discussed in further
detail in Section 5.

1. When two dimensions differ in the same direction
between a referent object and another object of the
same type, an overall size modifier will be produced
more often than an individuating size modifier.

2. When two dimensions differ in opposite directions
between a referent object and another object of the
same type, an individuating size modifier will be
produced more often than an overall size modifier.

3. The closer the aspect ratio of an object, the more
likely participants are to use an overall size modifier.

Figure 2: Size findings reported in Mitchell et al. (2011b).

4 The Size Algorithm

The size corpus provides information about size
when there is a single distractor of the same type,
however, in practice, a referent may be competing
against several distractors. To address this, the algo-
rithm must compare the referent’s height and width
against a larger set of heights and widths. A straight-
forward way to apply such a comparison is to take
theaverageheight and width of the items in the con-
trast set. Since size is more common when an item
of the same type is in the scene (Brown-Schmidt and
Tanenhaus, 2006), it may be suitable for the algo-
rithm to compare size using the height and width
average of other items of the same type. This also
provides a simple way to model the size expecta-
tions of the referent relative to similar items. Such
an approach is tested in Section 7.

We introduce the size algorithm in Figure 3 below.
It is based on the findings listed in Figure 2, and is
used when the following preconditions are met:

1. There is a target referent and one or more dis-
tractors

2. Each distractor has two dimensions that can be
compared with the target referent’s dimensions

As input, the algorithm takes the width and height
of the referent (rx, ry) and the width and height of
the distractor of the same type or average of the dis-
tractors of the same type as the referent (dx, dy).
The algorithm outputs one of the size types listed in
Table 1.

Lines 3 and 6 of SIZEMOD model the first find-
ing in Figure 2, creating a structure to generate an
overall size modifier (‘over’) with the appropriate
polarity (0 for a negative difference, 1 for a positive).

Input: Referent height, width (ry, rx),
Average height, width for distractors of referent’s type (dy, dx).
Output: Size modifier type (See Table 1).

SIZEMOD(rx, ry, dx, dy) :
1. axes =<rx, ry, dx, ry>
2. case(mod, pol)of:
3. ry> dy and rx> dx: (<‘over’>, 1)
4. ry> dy and rx< dx: LargestDimDiff(axes)
5. ry> dy and rx == dx: (CalcRatio(axes, ‘y’), 1)
6. ry< dy and rx< dx: (<‘over’>, 0)
7. ry< dy and rx> dx: LargestDimDiff(axes)
8. ry< dy and rx == dx: (CalcRatio(axes, ‘y’), 0)
9. ry == dy and rx> dx: (CalcRatio(axes, ‘x’), 1)
10. ry == dy and rx< dx: (CalcRatio(axes, ‘x’), 0)
11. ry == dy and rx == dx: (None, None)
12. return (mod, pol)

LARGESTDIM DIFF(<rx, ry, dx, dy>):
axis= axis with largest difference betweenr andd (x or y)
pol = direction of difference (0 or 1)
return (<‘ind’, axis>, pol)

CALCRATIO(<rx, ry, dx, dy>, axis):
if ry > rx: greater = ry, smaller = rx
else: smaller = ry, greater = rx
p = (greater/smaller) - 1
if p> 1: p = 1
v = round(100 * p)
i = random integer between 1 and 100
if i > v: mod =<‘over’>
else: mod =<‘ind’, axis>
return mod

Figure 3: Size algorithm.

Lines 4 and 7 create a structure to generate an indi-
viduating size modifier (‘ind’) referring to the axis
with the largest difference, with the appropriate po-
larity. Here, the modifier type selection reflects the
second finding in Figure 2, while the selected axis
is chosen based on the conclusions of Hermann and
Deutsch (1976).

Lines 5, 8, 9, and 10 are all cases where one axis
is different from the distractor and one axis is not.
In these cases, following the third finding in Figure
2, we calculate the ratio of difference between the
axes (CALCRATIO). This is a stochastic process that
models speaker preference for a modifier type as a
function of the object’s aspect ratio. The closer the
ratio of the x / y axes is to 1, the more likely the
algorithm is to generate an overall size modifier.

Line 11 handles the case where both the referent
and distractor have the same height and width. In
this case, no size modifier is generated.

ID Description
REFERENTFEATURES

1 ry target height
2 rx target width
3 rrat target height:width
4 ryrxdf target height - target width
5 rsurfar surface area of target
DISTRACTOR FEATURES

6 dy distractor height
7 dx distractor width
8 drat distractor height:width
9 dydxdf distractor height - distractor width
10 dsurfar surface area of distractor
COMPARISON FEATURES

11 ydf target height - distractor height
12 yratio target height / distractor height
13 xdf target width - distractor width
14 xratio target width / distractor width
15 ratdf target ratio - distractor ratio
16 discx 1 if rx> dx; 2 if rx == dx; 3 if rx < dx
17 discy 1 if ry> dy; 2 if ry == dy; 3 if ry < dy

Table 3: Visual features for each expression. Features 16
and 17 mirror the size algorithm’s comparisons.

5 Machine Learning

One of the strengths of applying machine learning
to this task is that it may be constructed as a se-
ries of binary classification problems, where a model
is built for each size type. This allows more than
one modifier to be generated for each referent, while
avoiding issues of data sparsity inherent in training
every combination of size as a separate class. The
machine learning approach therefore has functional-
ity that the hand-coded size algorithm does not have;
it is able to predict sets of modifiers for a referent in-
stead of being limited to a single modifier. This flex-
ibility is a benefit to the machine learning approach
over the hand-coded algorithm, and we return to this
issue in Section 8.

To build robust models for this task, we use the
data from the experiment in Mitchell et al. (2011a),
which includes 414 native or fluent speakers of En-
glish. Each expression is annotated to mark the size
modifiers and their types (Table 1).

A random selection of 10% of the dataset was
checked for inter-annotator agreement. We found
that many of the annotated brownie references
picked out thez-axis, the third dimensional axis
pointing inwards in the picture; although the im-

Type
<ind, y> <ind, x> <over>
1 0 1 0 1 0

Observed 22 10 3 0 51 43

Table 4: Frequency of observed size modifier types in the
craft corpus.

ages are two-dimensional, both annotators reasoned
about the three-dimensional shape to resolve refer-
ences to all three axes. This is probably especially
true for the brownies stimuli due to the angle of the
camera, where differences in height may appear to
be along thez-axis. In future work, it would be bet-
ter to control this aspect, perhaps making only two
dimensions visible. For this data, we group those
modifiers forz- andy-axes together. Inter-annotator
agreement was quite high atκ = 0.94.1

The models are constructed using C4.5 decision
tree classifiers as implemented within Weka (Hall
et al., 2009), with default parameter settings. We
did not find a significant improvement in accuracy
on our development set with different pruning meth-
ods or normalization. Each feature vector used by
the models lists visual size features that characterize
each image, such as the size of the referent and dis-
tractor’s axes, and differences between the two. We
also provide a set of features reflecting the compar-
isons made in the hand-coded algorithm. The feature
set is listed in Table 3.

6 Testing Corpus

To evaluate how well the models perform in a new
domain, we use the craft corpus from the experiment
reported in Mitchell et al. (2010). The 2010 exper-
iment is a different task, and differs in several criti-
cal ways from the 2011 experiment: (1) It was con-
ducted in-person, using three-dimensional objects;
(2) the referring expressions were produced orally;
(3) there were many different objects in the scene,
and (4) the objects had a variety of different features:
texture, material, color, sheen, etc., as well as size
along all three dimensions. A picture of the objects
in the experiment is shown in Figure 4. Subjects re-
ferred to objects as, for example, “the longer silver
ribbon”, and “small green heart”. Table 4 lists the
frequency of each observed size type in this corpus.

1729 size modifiers were compared for the agreement score;
5 modifiers only labeled by one annotator are excluded.

Figure 4: Object board for craft corpus.

As discussed above, we adapt the size algorithm
to the new domain by taking the average height and
width of all distractors of the same type, and com-
paring the referent against this average. The impli-
cations of this are three-fold: (1) Comparisons are
limited to those items of the same type; (2) compar-
isons are limited to those items in an immediately
surrounding group; and (3) comparisons are against
a general ‘gist’ of the surrounding scene, instead of
individual measurements.

To adapt the classifiers to the new domain, we
remove all direct measurement features from train-
ing and testing; work on our development set sug-
gests that including all listed features achieves the
best precision and recall when training and testing
in the same domain, however, when expanding to a
new domain, certain features should be removed for
optimal performance. This includes features 1 (ry,
target height), 2 (rx, target width), 4 (ryrxdf, target
height - width), 6 (dy, distractor height), 7 (dx, dis-
tractor width), 9 (dydxdf, distractor height - width),
11 (ydf, target height - distractor height), 13 (xdf,
target width - distractor width). Removing these fea-
tures allows the classifiers to build models from rel-
ative measurement features alone, and helps mini-
mize overfitting to any one domain.

7 Evaluation

Before testing on the new domain, we test how well
the two approaches do on the size corpus. The con-

discy <= 1: no
discy > 1
| discx <= 1: no
| discx > 1
| | drat <= 1
| | | xratio <= 0.909: yes
| | | xratio > 0.909
| | | | discy <= 2: no
| | | | discy > 2
| | | | | rrat <= 0.455
| | | | | | xratio <= 0.910: yes
| | | | | | xratio > 0.910
| | | | | | | rrat <= 0.413: yes
| | | | | | | rrat > 0.413: no
| | | | | rrat > 0.455: yes
| | drat > 1: no

Figure 5: Example decision tree: Training on Mechanical
Turk data, direct measurement features removed, model
for inclusion of (<over>, 0). Values in cm.

struction of the size algorithm was informed by this
corpus, and so this provides a measure of how well
the algorithm does in the domain for which it was
designed. The decision trees are evaluated in this
domain using leave-one-out validation, where the set
of expressions for a referent containing at least one
size modifier is tested against the models trained on
the size expressions for all other referents. An ex-
ample tree is shown in Figure 5. Features developed
from the hand-coded algorithm (features 16 and 17
in Table 3) appear to have high discriminative utility
in the trained models.

Unlike the machine learning approach, the size
algorithm generates no more than one size type
for each referent, although participants may pro-
duce several. To understand the upper bound of
both approaches, we therefore implement an oracle
method for the size algorithm (ORACLEalg) that al-
ways guesses the most common size type for each
referent, and an oracle method for the classifiers
(ORACLEtree) that always guesses the most com-
mon set of size types for each referent.

To understand the lower bound, we implement a
baseline method that guesses the most common size
type and most common set of size types in the train-
ing data for each testing fold. We find that the most
common set of size types across folds contains a
single modifier, making the baseline of the two ap-
proaches equivalent.

We evaluate the systems using precision and re-
call. Since we are comparing the set of predicted
modifiers with the set of modifiers that a descrip-
tion contains, it would have been possible to use the

Model
Mturk Crafts
precision/recall precision/recall

BASELINE 25.7% / 24.5% 16.4% / 16.4%
ORACLEalg 80.5% / 72.7% 89.1% / 89.1%
ORACLEtree 79.5% / 76.0% 89.1% / 89.1%
SIZE

69.7% / 63.4% 81.3% / 81.3%
ALGORITHM

DECISION
65.4% / 65.7% 80.5% / 81.3%

TREE

Table 5: Precision and recall for models, testing on ex-
pressions that contain size. The size algorithm is aver-
aged over 5 iterations.

DICE metric (Dice, 1945), as has often been done
in evaluations of REG algorithms (Gatt and Belz,
2008). But DICE does not distinguish between re-
call (i.e., modifiers that are not predicted but should
have been) and precision (i.e., modifiers that are pre-
dicted but should not have been), collapsing both of
these into one single metric. For our purposes, it will
be more informative to separate precision and recall.
Given:

Oe = The set of size modifier types observed in an
expressione

Pr = The set of size modifier types predicted for a
referentr

E = The multiset of expressions in the corpus
Er = The multiset of expressions for a referentr

Precision =

∑

e∈Er∈E

|Pr ∩Oe|

|Pr|

|E|

Recall =

∑

e∈Er∈E

|Pr ∩Oe|

|Oe|

|E|

Table 5 shows how well the different systems per-
form. Testing instances are limited to those that con-
tain a size modifier. The second column lists preci-
sion and recall on the size corpus. The difference in
results between the two systems is not statistically
significant.

The third column of Table 5 lists how well the sys-
tems do when tested on the new domain, the craft
corpus. The precision and recall values here are
identical for the systems that generate one modifier
because almost all size expressions in the craft cor-

pus contain just one modifier. This also allows a
more direct comparison between the two systems,
as both the lower bounds (BASELINE) and upper
bounds (ORACLE) of the two systems are equal.

As discussed in Section 6, both systems are
adapted slightly for the new domain. The size al-
gorithm uses the height and widthaverageof items
that are the same type as the referent. The decision
trees are trained on the full size corpus, and when
the models are built from all of the features listed
in Table 3, precision / recall on this task is 44.1%
/ 48.1%. However, once we adapt the classifiers to
the subset of relative measurement features, there is
a large jump for both measures.

The two systems perform similarly. The size algo-
rithm achieves just over 81.3% precision and recall,
while the machine learning approach reaches 80.5%
precision and 81.3% recall, and the differences be-
tween the two methods are not statistically signifi-
cant. Oracle accuracy is higher by around 8%, sug-
gesting that both systems are reasonable, and further
work may want to finesse the kinds of size informa-
tion that each uses.

8 Discussion

It is interesting that both systems perform better in
the new domain. Both were built based on typed
reference to one of two rectilinear solids in a two-
dimensional photograph, and still produce reason-
able output to spoken reference to one of several
three-dimensional objects with different shapes in a
much more descriptive task. The two systems likely
perform better on the craft corpus than the one they
were developed on because in the craft corpus, al-
most all expressions contain just one size modifier
(only one expression had more).2

The machine learning approach does poorly when
it uses the same set of features in both domains,
however, by removing those features that may lead
to overfitting – the direct measurements of individ-
ual objects – it dramatically improves in the new do-
main. The difference in precision and recall between
the two systems is not statistically significant, with
values above 80%.

A notable difference between the two systems is

2This was “the smallest long ribbon”, which both models
fail to predict.

that the machine learning approach can predict any
number of size modifiers, while the size algorithm
is limited to predicting one modifier (or none). The
upper and lower bounds are the same for both in the
craft corpus discussed here, however, the classifiers’
ability to predict when several size modifiers will be
included may help extend this method in other do-
mains.

One immediate question that arises from this
work is how to move from abstract size type to sur-
face form. For some modifiers, this will be relatively
straightforward, but for others, e.g., using (<over>,
1) to generate the phrase “the second largest one”,
further functionality must be in place to reason about
individual sizes of objects in the contrast set.

Both systems may be developed further by mod-
elling speaker variation. Adding speaker label as a
feature within the decision tree models guides the
construction of distinct speaker clusters (Mitchell et
al., 2011b) that generate different kinds of output.
Such a technique can be applied here to generate lan-
guage for a particular speaker cluster. In this case,
the ability of the machine learning approach to gen-
erate any number of modifiers may aid in tuning it
to specific speaker preferences.

In the size algorithm, speaker variation may be
applied several ways. Currently, the algorithm’s
CALCRATIO function decides which of the two
broad size modifier classes to generate by using a
random number generator. This was implemented
based on speaker variation in cases where the as-
pect ratio of an object approaches 1 (Figure 2). A
similar technique may be applied throughout the al-
gorithm, where a prior is assigned to various deci-
sions based on an analysis of how speakers behave.
Another method could apply slightly different ver-
sions of the algorithm to different speaker models,
where some more detailed aspects of the algorithm
are varied for different speaker profiles – for exam-
ple, placing a preference on height over width within
a threshold of axis size similarity.

9 Conclusions

We have presented two methods for generating size
modifiers. Both utilize the dimensional aspects of
objects in a scene to decide among six broad size cat-
egories, which may be used to inform the selection

of size modifier in a realized surface string. Both
work relatively well and are extensible to a new do-
main.

One of the next clear steps in developing the hand-
coded size algorithm is to add functionality for gen-
erating sets of modifiers. We would also like to ex-
plore different features and the effect they have on
the overall accuracy of the different approaches. We
hope to address modifiers that pick out specific con-
figurations of multiple axes, e.g., “stout” may be re-
alized from{(<ind, x>, 1), (<ind, y>, 0)}. Meth-
ods for reasoning about the distance and relative ori-
entation between the target object and its distractors
may guide which axis is referred to, and the systems
should be further expanded to real-world objects by
adding mechanisms to handle a thirdz-axis. A bet-
ter understanding of when a difference along an axis
is small enough not to be salient would help con-
nect these approaches more closely to a visual input,
placing constraints on when the outlined cases ap-
ply.

We hope to address other kinds of properties of
real-world referents using a similar methodology,
for example, reasoning about the inclusion of spa-
tial prepositions between objects. By further defin-
ing when different properties are used, how distinct
properties interact, and the features affecting their
realization, we hope to continue to expand the meth-
ods to generate naturalistic reference.

10 Acknowledgments

This research was funded by the Scottish Informat-
ics and Computer Science Alliance (SICSA) and the
Overseas Research Students Awards Scheme (OR-
SAS). Thanks to help from Ellen Bard, Brian Roark,
and the anonymous reviewers.

References

Sarah Brown-Schmidt and Michael K. Tanenhaus. 2006.
Watching the eyes when talking about size: An investi-
gation of message formulation and utterance planning.
Journal of Memory and Language, 54:592–609.

Robert Dale and Ehud Reiter. 1995. Computational in-
terpretations of the gricean maxims in the generation
of referring expressions.Cognitive Science, 19:233–
263.

Lee R. Dice. 1945. Measures of the amount of ecologic

association between species.Ecology, 26(3):297–302,
July.

Albert Gatt and Anja Belz. 2008. Attribute selection
for referring expression generation: New algorithms
and evaluation methods.Proceedings of Fifth Inter-
national Natural Language Generation Conference,
pages 50–58.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The weka data mining software: An update.
SIGKDD Explorations, 11(1).

Theo Hermann and Werner Deutsch. 1976.Psychologie
Der Objektbenennung. Huber Verlag, Bern.

John Kelleher, Fintan Costello, and Josef van Genabith.
2005. Dynamically structuring, updating and interre-
lating representations of visual and linguistic discourse
context.Artificial Intelligence, 167:62–102.

Ruud Koolen, Martijn Goudbeek, and Emiel Krahmer.
2011. Effects of scene variation on referential over-
specification.Proceedings of the 33rd annual meeting
of the Cognitive Science Society (CogSci 2011).

Emiel Krahmer, Sebastiaan van Erk, and André Verleg.
2003. Graph-based generation of referring expres-
sions.Computational Linguistics, 29(1):53–72.

Barbara Landau and Ray Jackendoff. 1993. “What” and
“where” in spatial language and spatial cognition.Be-
havioral and Brain Sciences, 16:217–265.

Margaret Mitchell, Kees van Deemter, and Ehud Reiter.
2010. Natural reference to objects in a visual domain.
Proceedings of the Sixth International Natural Lan-
guage Generation Conference (INLG-10).

Margaret Mitchell, Kees van Deemter, and Ehud Reiter.
2011a. Applying machine learning to the choice of
size modifiers. Proceedings of the 2nd PRE-CogSci
Workshop.

Margaret Mitchell, Kees van Deemter, and Ehud Reiter.
2011b. On the use of size modifiers when referring to
visible objects.Proceedings of the 33rd Annual Con-
ference of the Cognitive Science Society.

Ehud Reiter and Robert Dale. 2000.Building Natural
Language Generation Systems. Cambridge University
Press.

Julie C. Sedivy, Michael K. Tanenhaus, Craig G. Cham-
bers, and Gregory N. Carlson. 1999. Achieving in-
cremental semantic interpretation through contextual
representation.Cognition, 71:109–147.

Kees van Deemter. 2006. Generating referring expres-
sions that involve gradable properties.Computational
Linguistics, 32(2):195–222.

Jette Viethen and Robert Dale. 2010. Speaker-dependent
variation in content selection for referring expression
generation.Proceedings of the 8th Australasian Lan-
guage Technology Workshop, pages 81–89.

