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Abstract

Towards the Generation of Natural Reference

Margaret A. Mitchell

Chair of the Supervisory Committee:

Professor Scott Farrar

Computational Linguistics

In this thesis, I examine the task of generating referring expressions that sound natural,

mirroring reference produced by people. I focus on psychological and semantic issues to

formulate a computational model of natural human reference. The algorithm I develop is

shown to be capable of generating most referring expressions elicited from human partici-

pants in an evaluation task.

To create a computational model of natural reference, I separate two forms of refer-

ence: reference to distinguish an entity, and reference to describe an entity. Reference to

distinguish an entity is generated by the algorithm I develop. The algorithm contains an

approach to prenominal modifier ordering that may be used for either form.

This algorithm is composed of three major functions, paralleling the three components

common to natural language generation systems. The content determination function de-

rives two types of modifiers, using an incremental process to derive modifiers from com-

parison of the intended referent to other items in the context. The microplanning function

selects specific modifiers to be used, creating a structure that maps directly to a single refer-

ring expression. A type system based on modifier distribution is developed for the surface

realization stage of the algorithm, and is used to order modifiers prenominally.

The type system is extensible to a variety of applications, and I evaluate the system on

a corpus. It is shown to be robust and accurate. The algorithm is evaluated against human

data and shown to successfully reflect natural language use.
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Chapter 1

INTRODUCTION

Referring is the task of using language to identify or pick out an entity. Natural

language generation, the task of generating language from a machine representation of

knowledge, utilizes referring expression generation algorithms to produce expressions

that refer. Algorithms for the generation of referring expressions aim to produce descriptions

of entities as quickly as possible, as effectively as possible, and as naturally as possible.

In this thesis, I introduce an algorithm for the generation of referring expressions. This

algorithm is created to generate expressions that sound natural. I build on previous work to

develop an algorithm capable of generating the same kinds of expressions that people use.

The algorithm is shown to be capable of generating referring expressions identical to the

vast majority of human-produced referring expressions in a visual presentation task, and is

more successful at creating natural reference than one of the most prominent algorithms in

the field, the Incremental Algorithm (Dale and Reiter, 1995).

This chapter provides an introduction to the generation of natural referring expressions.

In the next section, I explain how the generation of referring expressions is placed within the

broader context of natural language generation.1 My discussion of generation is followed

by an analysis of what it means for an expression to be natural, and how naturalness

can be modelled in an algorithm that generates referring expressions. Emphasis is placed

specifically on the Gricean maxims and Thomas Pechmann’s idea of incremental speech

production, which have been used to guide naturalness in the past. A summary of these

ideas and a basic outline of the algorithm follows the discussion of naturalness. The chapter

1Throughout this thesis, the term “natural language generation” is used to refer to the process of gen-
erating natural language, while the term “Natural Language Generation” is used to refer specifically to
the field exploring the issue. I also use this convention to separate the field of “Referring Expression
Generation” from the task of “referring expression generation”, and to separate the broad components of
an NLG system from the tasks therein.
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concludes with an overview of the structure of the thesis as a whole.

1.1 Background

Previous research on the generation of referring expressions has largely aimed at producing

a distinguishing description of a target object, a set of attribute-value pairs which are

together true of the intended referent but of no other entity in the context set (Dale, 1989;

see Chapter 2 for more). Yet even for the generation of specific, distinguishing reference

to entities, formulating an algorithm is difficult. Work in this area has focused on a range

of different goals, with vastly different results. These goals can be broadly categorized as

prioritizing among the following three objectives:

• Creating a computationally efficient algorithm

• Creating an algorithm that uniquely identifies a referent (the goal-driven approach)

• Creating an algorithm that produces expressions reflecting psycholinguistic realities

of human reference

Algorithms are not limited to just one of these goals, and the most prominent algo-

rithm in the generation of referring expressions, Dale and Reiter’s Incremental Algorithm

(Dale and Reiter, 1995), produces expressions motivated by all three. But there is a trade-

off between these three goals, and it is difficult to fully realize any one of them without

compromising the other two. The extent of the trade-off depends on the nature of the

system. Algorithms for the generation of referring expressions have largely prioritized the

first two goals (Areces et al., 2008; Gardent, 2002). This thesis introduces an algorithm

that prioritizes the third.

To simplify the problem, I only approach the generation of expressions headed by a noun

and preceded by a series of modifiers, such as those used for first reference to an entity.

Examples include the tall man and an icy torrential rain. I exclude in this grouping any

phrases with embedded prepositional phrases, complementizer phrases, or relative clauses.

The issue of definiteness is outside the scope of this work as well, and the selection of articles

will not be addressed.
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The algorithm I present differs from previous approaches in that it does not create

distinguishing descriptions of items. A distinguishing description is a goal-driven logical

conjunction of properties. A distinguishing description must, by definition, uniquely identify

an intended referent, which makes it an unsuitable term for the model of natural language I

develop. Below, I define separate terms for reference that are specifically aimed at capturing

natural reference.

I follow previous work and define the entity to be picked out from a group of entities

as the intended referent, the group in which it exists as the context set, and the group

of entities not including the intended referent as the contrast set. These items form the

basis of most referring expression generation algorithms.

The algorithm developed in this thesis is composed of three major functions, which

may be incorporated into the three stages common to natural language generation systems.

These three stages are referred to as Text Planning, Microplanning, and Surface Realization.

An outline of this process is given in Table 1.1. This outline and further discussion of its

parts can be found in (Reiter and Dale, 2000).

Table 1.1: Natural Language Generation: Outline (Reiter and Dale, 2000)

Module Content task Structure task

Text Planner content determination discourse planning

Microplanner lexicalization, referring expression generation aggregation

Surface Realizer linguistic realization structure realization

The Text Planner is the module that selects the information that will be expressed

by the system. The Microplanner converts this information into linguistic form, and

is traditionally where referring expression generation algorithms are incorporated. The

Surface Realizer generates the linguistic forms as readable (or audible) sentences. This is

a general categorization, and the specifics of each module depend on the generation system.
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With the task of referring expression generation defined and placed within the broader

context of natural language generation, I now turn to an analysis of what it means for

reference to be natural. This allows me to begin formulating a computational model of

natural referring expression generation.

1.2 Naturalness

Two major sources are widely used to model naturalness in referring expression generation:

the Gricean maxims and incremental speech production. The Gricean maxims have

dominated the field as principles to guide naturalness, and I explain why these maxims

cannot be used when the primary goal is to generate natural language. The theory of

incremental speech production is incorporated into my own algorithm, and I analyze how my

interpretation of this process differs from how it is commonly interpreted. I then introduce

the outline of my algorithm.

1.2.1 The Gricean Maxims, Underspecification, and Overspecification

In the absence of concrete rules that define language naturalness, workers in Natural Lan-

guage Generation turn to H. P. Grice (Grice, 1975; see Dale and Reiter, 1995; Sripada

and Reiter, 2003). Grice developed maxims in an attempt to fit metaphysical issues into

the language of logic. His maxims have been adopted by those working in NLG as a list

of guidelines people use when generating language. The Gricean maxims and a detailed

discussion of Grice’s work are available in Chapter 2.

Grice believed that the maxims are those which participants “will be expected” to ob-

serve in conversation. Grice does not make the argument that the maxims capture what

people do when they communicate, and instead comments that these maxims may be used

to help guide the “maximally effective exchange of information” (58). The goal of the

maxims is not to guide naturalness, but rather to guide a kind of idealized conversation.

Utilizing these maxims to guide naturalness therefore presents a problem. What people do

when they speak – the ultimate measure of what is natural – is often quite different than

what the maxims capture.
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Language produced by people differs from what is captured by the Gricean maxims in

two clear ways: Expressions are often underspecified, failing to distinguish the intended

referent (Clark and Wilkes-Gibbs, 1985; Pechmann, 1989; Viethen and Dale, 2008), and

even more commonly are overspecified, with descriptors that rule out no members of the

contrast set (Sonnenschein, 1985). This use of overspecified follows the definition originally

used by Pechmann (1989), to denote an expression that contains features (or properties)

which are not distinguishing at all (98).

Because the Gricean maxims fail to capture what naturally happens in language, they

cannot be used to guide the generation of natural language. Instead, a model that accounts

for what people do when they speak, including underspecification and overspecification,

must be formalized. This is developed by utilizing natural language corpora and the ideas

behind incremental speech production.

1.2.2 Incremental Speech Production

The Incremental Algorithm and other algorithms informed by the Gricean maxims seek to

emulate natural language by modelling Thomas Pechmann’s observation that people pro-

duce utterances incrementally (Pechmann, 1989). The research provided by Pechmann is

illuminating, and extremely useful for formulating computational models of human lan-

guage. However, how it is commonly incorporated is not reflective of Pechmann’s findings.

Pechmann’s study is detailed in Chapter 2, and I will only discuss it briefly here before

examining how the findings are implemented in my own approach.

In Pechmann’s study, participants wearing eye-trackers were presented with pictures of

objects that varied in size and color. They were asked to name one object so that the

experimenter “unambiguously knew which object was meant” (94). Pechmann found that

as his participants named a target object, they observed the other surrounding objects. The

idea Pechmann developed to account for this is that each object that is fixated on helps

determine what is next said to identify the target object. This is the idea of incremental

speech production.

As described by Pechmann, incremental speech production has two major components:
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1. A separation between two kinds of properties

2. An incremental analysis of the surrounding objects (the contrast set) to derive de-

scriptors for one kind of property

Pechmann’s findings have generally been implemented as an incremental process that

operates on attribute-value pairs (not the contrast set) that hold for the entire context set

(not just one type of property). My algorithm adopts a more straightforward analysis of

Pechmann’s findings. I will now discuss each component in greater detail.

Two Kinds of Properties

I follow Pechmann in separating out two major kinds of properties to pick out an item from

a group: those that are easily cognizable without a consideration of the surrounding objects

(for example, color), and those that are derived from comparison of the intended referent

with the surrounding objects (for example, size). It is only the latter that is derived from

an incremental process.

Imposing a separation between the two properties provides a way to neatly account for

the kinds of redundant or “unnecessary” information that tends to be included in reference.

Those properties that are easily cognizable without consideration of the surrounding objects

are generated regardless of whether they rule out other members of the contrast set. Those

properties that are derived from comparison processes are generated by modelling the com-

parison process algorithmically; by incrementally parsing each item in the contrast set. This

model generates the kinds of referring expressions observed in natural language: uniquely

identifying, underspecified, and overspecified expressions. I now discuss the implementation

of the incremental process.

Incrementally Ruling out the Contrast Set

Incremental referring expression generation algorithms proceed by selecting properties that

rule out other competing referents. The entire contrast set is available at the time when

referring expression generation begins. Only attribute-value pair selection is incremental,
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manifested from incrementally ruling out members of the entire contrast set. This imple-

mentation misconstrues Pechmann’s findings. Humans begin to generate reference before

they are done scanning the entire scene. At the time of reference, they do not have access

to the entire contrast set, but rather, examination of the contrast set is incremental.

The algorithm I propose follows this more literal interpretation of Pechmann’s work.

The algorithm utilizes as input a series of vectors, which correspond to the members of

the context set. The vectors of the contrast set are analyzed incrementally, following a

prespecified order to generate modifiers such as tall and wide. The vector of the intended

referent is analyzed separately, to generate modifiers such as red and velvet. This approach

successfully generates natural referring expressions.

1.2.3 Summary

Previous approaches to generating natural sounding referring expressions have justified

uniqueness on the basis of Grice (and therefore also suggested that such expressions would

be “natural”), which is an assumption I reject. Tests on communication between people

have shown two ideas that are integral to generating natural sounding referring expressions:

1. Humans generate referring expressions that do not uniquely identify referents

2. Humans generate referring expressions with descriptors that are not distinguishing

To formalize this in a computational model, I rely on corpus studies and psychological

work, particularly focusing on the findings from Pechmann (1989). Following Pechmann, I

impose a separation of two basic kinds of properties: those that are easily cognizable without

a consideration of the surrounding objects (for example, color), and those that are derived

from comparison of the intended referent with the surrounding objects (for example, size).

An incremental analysis of the contrast set is used to derive only the latter properties. This

analysis differs greatly from previous work to date, which has not prioritized naturalness

but has implemented a different interpretation of Pechmann’s findings.
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1.3 The Approach

The previous two sections have outlined basic ideas on how to generate natural reference.

Using these ideas, I construct an algorithm that generates natural referring expressions. I

now outline the algorithm, and define specifically the kind of reference it generates.

As mentioned in the Section 1.1, approaches to the generation of referring expressions

largely focus on creating distinguishing descriptions. However, a distinguishing description

is by definition not a natural form of reference, and so cannot be used for the current work.

Instead, I isolate two types of reference, which both take the form of a noun phrase with

prenominal modifiers. I call these types distinguishing reference and describing reference. I

define the term distinguishing reference to be reference aimed at picking out an entity

from a group of entities, and the term describing reference to be reference aimed at con-

veying information about a referent, regardless of whether that information provides unique

identification (or is actually true of the referent). This separation follows previous research

on reference (Donnellan, 1966; Kronfeld, 1989). Research on human referring expression

generation, without imposing such a separation, generally tends to examine expressions

that uniquely identify an object from a group of objects. This research may be applied

specifically to what I define as distinguishing reference.

To consider the difference between the two forms of reference, imagine the case of dis-

cussing art from around the world. In this situation, one may mention a Byzantine tapestry,

or a helpful curator. These expressions do not necessarily pick out one item from a group of

items, but rather, introduce a referent along with descriptors relevant to the conversation.

To pick out that same tapestry when presented with other kinds or art, one may tend to

identify the brown tapestry or the tapestry with a picture in it. This speaks to a basic point:

Picking out an item from a group of items is a different task than naming an item in a

summary or a discussion, where the goals of the act as a whole determine which descriptors

are used to identify the referent.

The two forms require different generation approaches. To generate distinguishing ref-

erence necessitates considering what properties of an entity will identify it; to generate de-
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scribing reference draws from the desire to convey information about an entity, or describe

it in some way that is relevant to the context of the communicative act. The algorithm

developed in this thesis generates distinguishing reference.

To generate distinguishing reference, fundamental properties of the entity being referred

to must be analyzed. This is a content determination task, and represented in my algorithm

as a text planning function. This function returns a variety of descriptors. The second stage

of this algorithm is a microplanning function, which can select specific prenominal modifiers

for natural reference based on the linguistic personality desired of the system. The ordering

of the modifiers that are not derived incrementally are determined by the algorithm’s surface

realization function using a modifier type system developed in Chapter 4. This modifier

type system may be used to generate any noun phrase with prenominal modifiers. The

algorithm as a whole is tested in Chapter 5.

A flowchart illustrating how my algorithm for distinguishing reference fits within a nat-

ural language generation system is shown in Figure 1.1. The boxes on top represent the

components of the algorithm developed in this thesis, and the boxes below represent where

they may be placed in an NLG system. Chapter 3 introduces the text planning and mi-

croplanning components of the algorithm to generate distinguishing reference. Chapter 4

introduces the surface realization component, and a modifier type system is developed that

may be used to generate both distinguishing reference and describing reference.

Figure 1.1: Distinguishing Reference and Describing Reference
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1.3.1 Distinguishing Reference

I may now bring the ideas outlined in this chapter to a head: For an algorithm to generate a

form of natural reference, distinguishing reference, some modifiers must be generated based

on the fact that they convey salient properties of the referent and other modifiers must be

generated based on an incremental analysis of the relations that hold between the intended

referent and the contrast set. The algorithm introduced in Chapter 3 does this by separating

out two main kinds of properties. I now define these to be absolute properties, those

properties that are easily cognizable without a consideration of the surrounding objects (for

example, color), and gradable properties, those that are derived from comparison of the

intended referent with the surrounding objects (for example, size).

These properties can be used to produce several referring expressions for each referent.

Gradable properties are parsed by the algorithm by an incremental analysis of the contrast

set, while absolute properties are stored and then ordered in the surface realization stage by

using a modifier type system. As discussed earlier, the absolute properties are not chosen

by comparison with any items in the contrast set, and so may include information that is

not uniquely distinguishing. The gradable properties selected to identify the referent are

derived from incrementally comparing the intended referent to the items in the contrast set.

The algorithm derives modifiers from these properties before passing them in a structure to

the surface realization component.

The output of this algorithm, once absolute properties are ordered in the surface re-

alization stage, is a noun phrase with prenominal modifiers. Each referring expression is

structured so that absolute properties are closer to the head noun than gradable properties.

Some examples of the phrases the algorithm generates are given in Figure 1.2.

1.3.2 Surface Realization

To order the modifiers derived from absolute properties, the surface realization component

of the algorithm utilizes a modifier type system. The type system includes adjectives (small
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(1) green box

(2) large green box

(3) large green velvet box

Figure 1.2: Example Distinguishing Reference

cat), nouns that modify other nouns (metal cat), and modifying verb forms (tired danc-

ing cat). Ordering based on these types is straightforward, and outlined in Chapter 4.

This modifier type system is developed for the algorithm, but may be used to order the

prenominal modifiers of any noun phrase.

The modifier type system is a separate component, used by the algorithm. It may be

provided by the system, and in Chapter 4 I break from a discussion of the algorithm in

order to develop the modifier type system. This is followed by an evaluation, which shows

the system to be extremely effective at ordering modifiers prenominally. I will summarize

the system briefly here.

The type system is based on the distribution of prenominal modifiers in natural language,

and is developed using the Google N-Gram corpus (Brants and Franz, 2006) and WordNet

(Miller, 2006). A natural maximum of four modifiers preceding the head noun is assumed,

and from this assumption, nine modifier classes are derived. These classes are used to order

modifiers prenominally, and provide a way to generate orderings of modifiers that have strict

positional preferences (big red hat and not ?red big hat) as well as orderings of modifiers that

have more loose positional preferences (domestic organic beer and organic domestic beer).

Instead of requiring an ordering of individual modifiers2 along with each referring ex-

pression to be generated, as previous research has proposed, this system allows modifiers

to belong to larger classes, where the classes indicate the ordering prenominally, and the

surface realization component simply needs to order the adjectives based on which classes

they belong to. An unordered grouping of prenominal modifiers, along with the head noun,

2More precisely, instead of requiring a prespecified ordering of attribute-value pairs.
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are therefore required as input to the surface realization component. That is, the process of

ordering prenominal modifiers to identify a referent requires a structure for which the task

of content determination has already been completed. The approach to surface realization

can therefore be used to generate any form of reference where a head noun is preceded by

modifiers.

1.3.3 Evaluation

To evaluate the effectiveness of the algorithm, Amazon’s MechanicalTurk program (Amazon,

2008) is used. Expressions are elicited from human participants, and I analyze whether

each referring expression can be generated by the algorithm I introduce as well as by the

Incremental Algorithm. I find that my algorithm is capable of generating the vast majority of

observed human referring expressions, and more successful than the Incremental Algorithm.

1.4 Thesis Organization

This thesis is presented in six chapters. The following chapter outlines the field of Refer-

ring Expression Generation, documenting the literature that has been most influential in

this domain. Chapter 3 introduces the algorithm for generating referring expressions for

distinguishing reference, and discusses its implementation. Chapter 4 presents an approach

to ordering prenominal modifiers, which can be used for both distinguishing reference and

describing reference. Chapter 5 examines the effectiveness of the proposed algorithm by

presenting an evaluation of how many expressions elicited from humans in a visual presen-

tation task can be predicted by the algorithm. Finally, Chapter 6 summarizes the ideas and

findings from this thesis, and offers a direction for future research.
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Chapter 2

LITERATURE REVIEW

To approach an analysis of the generation of referring expressions, I will first present a

discussion of the papers that have informed this field. In this chapter, I trace the history

of research in referring expression generation and bring the reader to an understanding of

where the field currently stands. The areas I discuss are drawn from work in philosophy,

computer science, and psychology. The papers discussed are those most significant to the

current work, but the brief summaries I provide here are a very small piece of the breadth

of knowledge conferred by these authors.

This chapter also provides a short introduction to approaches that have been taken to

classify adjectives in order to determine their position prenominally. I offer a different kind

of prenominal modifier classification scheme in Chapter 4, for use in a Surface Realization

component of generation systems. This classification scheme is the last piece of the algorithm

introduced in this thesis, and the papers outlined here present the background from which

my own approach is developed.

2.1 The Beginning

In 1967, H. P. Grice gave a series of lectures at Harvard on the nature of conversation. Grice

was a philosopher and a linguist, and these lectures were a product of years of research on the

relationship between logic and natural language. Grice sought to represent conversation and

natural language in logical terms, and believed that the fundamental processes underlying

communication could be represented in logical form. Notes from these lectures circulated

for years, and in 1975 a journal published a portion of this work in an article called “Logic

and Conversation” (Grice, 1975). This article outlined one of the basic ideas Grice had

developed, the idea that conversation operates by obeying to four basic maxims. These

maxims have come to be known as the Gricean maxims, and they are listed in Figure 2.1.
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Quantity

1. Make your contribution as informative as is required.

2. Do not make your contribution more informative than is required.

Quality – Try to make your contribution one that is true.

1. Do not say what you believe to be false.

2. Do not say that for which you lack adequate evidence.

Relation – Be relevant.

Manner – Be perspicuous.

1. Avoid obscurity of expression.

2. Avoid ambiguity.

3. Be brief (avoid unnecessary prolixity).

4. Be orderly.

Figure 2.1: The Gricean Maxims

These maxims became extremely influential. Grice’s work related natural language to

logical predications, a realm where clearly defined rules can operate. With this in place,

language could be seen even more clearly as deriving from interacting principles, where

different kinds of utterances are a product of consistent and predictable forms. That is,

Grice helped pave the way for language to be seen as fundamentally logical.

This approach to language had a lasting impact on NLG, among other fields. Grice’s

maxims are well-suited to the intrinsically logical processes of computers, and have provided

the basis for a great deal of work utilizing computers to produce natural sounding utterances.

However, these maxims are not aimed at capturing natural language. Grice writes,

The conversational maxims . . . are specially connected (I hope) with the par-

ticular purposes that talk (and so, talk exchange) is adapted to serve and is

primarily employed.

(Grice, 1975: 58)



15

The nature of this connection is not specified, but the article is clearly not aimed at capturing

the way people actually speak. Instead, it provides guidelines for how people should speak

if they want to communicate with optimal effectiveness. It does not follow that the Gricean

maxims can be used to guide naturalness.

The discrepancy between natural language and language obeying the Gricean Maxims

is pointed out by Grice himself, in the same article where the maxims are introduced. He

writes:

I have stated my maxims as if this purpose were a maximally effective exchange

of information; this specification is, of course, too narrow.

(Grice, 1975: 58)

In this thesis, I follow this advice.

Around this same time, Terry Winograd was helping to create the beginnings of the

very field that would rely on Grice’s intuitions. Working in the M.I.T. Artificial Intelligence

Laboratory, Winograd spent the late sixties and early seventies developing a program called

SHRDLU, one of the first attempts to understand language by using a computer. The

program, which was eventually documented in Winograd (1972), displayed a variety of

blocks and pyramids. Users could enter instructions for the computer to “pick up” or

“find” the different shapes, and the computer would “understand” the instructions, or else

ask for clarification.

Creating the ability for computers to understand language in this way, to interact with

and respond to a user, gave rise to an entire area of research. This has come to be known

as Natural Language Processing, comprised of the two subfields of Natural Language Un-

derstanding and Natural Language Generation. It is in the field of Natural Language

Generation that the current work proceeds.

2.2 The Field of Natural Language Generation Begins

By the beginning of the 1980s, work in Natural Language Generation had exploded. David

McDonald (1980) wrote a thesis examining the utilization of computers to generate language
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using constraint-based processes, while Douglas Appelt (1981) worked towards analyzing

how to capture the different goals at play when communicating. This research helped pave

the way for work examining how computers could generate and parse linguistic phenomena.

In 1985, Appelt began to address specific issues in language generation. In a discussion

of the problem of creating natural sounding reference to entities, Appelt (1985) introduced

the problem of planning referring expressions, expressions that identify an entity. Appelt

utilized the Kamp system to approximate human production of sentences using first order

logic, and stressed the difficulty in capturing how humans refer. He noted that there are

many types of object reference, satisfying multiple goals. Appelt saw that producing natural

utterances requires a powerful system, capable of reasoning not only about the physical

world, but beliefs and intention.

Through the rest of the eighties, Kathleen McKeown (McKeown, 1985), Michael Zock

(Zock et al., 1986), and others further explored the intricacies of natural language generation.

Formally explicit algorithms for the generation of natural language began to appear. And

in 1989, the first algorithm for the generation of referring expressions was introduced.

2.3 Referring Expression Generation

In 1989, Thomas Pechmann published a paper illustrating that reference to objects is often

produced incrementally (Pechmann, 1989). As discussed in Chapter 1, this is the process

of incremental speech production. Using eye-tracking techniques, Pechmann presented

subjects with a variety of objects, and asked them to name one. This exercise showed

that people begin producing descriptions of items before they scan the entire scene, and in

fact, describe the object as they fixate on the other objects in the scene. Pechmann argues

that this suggests that reference to objects is an incremental process, where the features

necessary to distinguish an object are not formulated before the utterance begins, but rather

chosen as the utterance progresses.

Further findings from Pechmann’s study include the fact that speakers produce reference

that is overspecified, with descriptors that are true of all objects in a scene and not

necessary for unique identification. Pechmann also showed that, in his tasks, people include
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color descriptors in 98% of their utterances to pick out objects.

This research has become the most influential psycholinguistic work in Referring Expres-

sion Generation. For the first time, the cognitive processes involved in reference began to be

made clear. This has made it possible to formulate algorithms that parse scenes similarly

to how humans do, and so generate natural sounding reference.

However, there are elements of Pechmann’s work that are often overlooked. To describe

incremental speech production, Pechmann writes:

. . . The speaker initially pays attention to the target object without seriously

considering the context. . . The speaker starts to articulate features of the tar-

get object which are easily cognizable. One such feature is, for instance, color,

which can be determined without considering any other contextual objects. In

contrast, describing an object as either ‘small’ or ‘large’ required comparison pro-

cesses. . . Such an incremental strategy of object naming implies that the speaker

does not absolutely intend to mention only distinguishing features of the target

object while carefully trying to avoid the incorporation of any non-distinguishing

information into his utterance. It is rather characteristic of such a strat-

egy that the speaker articulates features of the target before he had

determined whether they are distinguishing or not.

(Pechmann, 1989: 98. Boldface my own).

Pechmann proposes that there are actually two distinct kinds of features at play in gener-

ating reference, and incremental speech production proceeds for only one; this is comprised

of those features that require comparison processes. The nuances of incremental speech

production are discussed in detail in Chapter 1.

Later that year, Robert Dale introduced the first explicit algorithm for the generation

of referring expressions (Dale, 1989). In this paper, Dale describes the referring expression

generation mechanisms used in the system epicure, and introduces what came to be known

as the Full Brevity Algorithm. This algorithm produces the minimal description of an object

necessary to uniquely identify it. That is, this algorithm produces expressions with the
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fewest amount of descriptors necessary to distinguish an object in a group of objects.

This kind of reference is defined by Dale to be a distinguishing description. This

term is adopted in all later work in the area. The definition Dale uses is as follows:

Suppose that we have a set of entities U such that

U = {x1, x2, . . . xn}

and that we wish to distinguish one of these entities, xi, from all the others.

Suppose, also, that the domain includes a number of attributes (a1, a2, and so

on), and that each attribute has a number of permissible values (vn1, vn2, and

so on); and that each entity is described by a set of attribute-value pairs. In

order to distinguish xi from the other entities in U, we need to find some set

of attribute-value pairs which are together true of xi, but of no other entity in

U. This set of attribute-value pairs constitutes a distinguishing description of xi

with respect to the context U.

(Dale, 1989: 71)

In Dale’s terminology, the object being referred to is the intended referent, and the

group of entities that is not the intended referent is the contrast set. These are defined

again for my own approach in Chapter 3.

Two years later, Ehud Reiter published a paper addressing some of the limitations of

the Full Brevity approach to referring expression generation. In this paper, Reiter proposes

a new version, called the Local Brevity Algorithm. This algorithm avoids some of the

computational complexity of the first, checking that each description component cannot be

replaced by a briefer description component without losing discriminatory power.

Later that year, Dale and Haddock (1991) introduced a procedure that could generate

referring expressions involving relations, using a depth-first search. Problems arise from

this algorithm when it gets stuck recursively trying to identify the referent and the object

used to identify the referent, generating descriptions such as “the cup on the floor which is

holding the cup which is on the floor which is...”
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Work in the generation of referring expressions began to focus specifically on naturalness

with the publication of the paper “Computational Interpretations of the Gricean maxims

in the Generation of Referring Expressions” (Dale and Reiter, 1995). This paper underlies

much of the following work in the generation of referring expressions. In this paper, Dale

and Reiter introduce the Incremental Algorithm for generating distinguishing descriptions

of referents.

Drawing on the Gricean maxims and the idea of incremental speech production developed

by Pechmann, the Incremental Algorithm aims to pick out a referent by incrementally

analyzing the properties that are true of the referent, and finishing when the intended

referent has been uniquely identified.

As in previous algorithms, the Incremental Algorithm operates on the properties as

represented in terms of attribute-value pairs. It proceeds by iterating through attributes

in a predefined order. For each attribute, it checks whether specifying a value for that

attribute would rule out at least one referent in the current discourse that has not already

been ruled out. If it does, that attribute is selected. The algorithm then chooses a value for

that attribute that is known to the user and that is as basic as possible while ruling out the

maximum number of referents possible. Once this descriptor is selected, the algorithm adds

it to a set to be used in the referring expression. This continues until there are no longer

any referents confusable with the intended referent. Dale and Reiter define the decision

on which set of properties to single out the target object as the content determination

problem. Pseudo-code for this algorithm is given in Figure 2.2.

One interesting piece of this algorithm is the UserKnows function. This was not de-

veloped in the paper, but it provides a way to account for the interlocutor’s model of the

common ground. The algorithm thus has a way of reasoning about shared knowledge. The

algorithm also calls to a BasicLevelValue function and a MoreSpecificValue function, which

are not defined as part of the algorithm but provide system-dependent information on the

basic and more specific forms for each selected attribute.

Dale and Reiter also overview the previous algorithms in the field, and argue that the

Incremental Algorithm is preferable, as it is less computationally complex and more reflec-
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MakeReferringExpression(r, C, P)

L ← { }
for each member Ai of list P do

V = FindBestValue(r, Ai, BasicLevelValue(r, Ai))
if RulesOut(<Ai, V>) 6= nil then

L ← L ∪ {<Ai, V>}
C ← C – RulesOut(<Ai, V>)

end if
if C = {} then

if <type, X> ∈ L for some X then
return L

else
return L ∪ {<type, BasicLevelValue(r, type)>}

end if
end if

end for
return failure

FindBestValue(r, A, initial-value)

if UserKnows(r, <A, initial-value>) = true then
value ← initial-value

else
value ← no-value

end if
if (more-specific-value ← MoreSpecificValue(r, A, value)) 6= nil ∧
(new-value ← FindBestValue(A, more-specific-value)) 6= nil ∧
(|RulesOut(<A, new-value>)| > |RulesOut(<A, value>)|) then

value ← new-value
end if
return value

RulesOut(<A, V>)

if V = no-value then
return nil

else
return {x : x ∈ C ∧ UserKnows(x, <A, V>) = false}

end if

(Dale and Reiter, 1995: 257)

Figure 2.2: The Incremental Algorithm
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tive of what humans actually do. They also state that “[conclusions from the paper], in

particular that computationally simple interpretations of the Gricean maxims of conversa-

tional implicature should be used, will also prove applicable to other referring expression

generation tasks” (234). These ideas have largely been adopted in the field.

2.4 What Psychological Evidence Has to Say

Other than the seminal work by Pechmann, there is some psychological work that has specif-

ically addressed different facets of how people refer to objects. These studies investigate

what properties of objects people use when trying to pick out a single object, and how

reference and dialogue proceeds. There is not a great amount of literature on the topic,

but any algorithm that attempts to mimic human production is well-advised to draw from

what is available.

In 1985, Clark and Wilkes-Gibbs organized a study using tangram figures (Clark and

Wilkes Gibbs, 1986), which illustrated that in a cooperative identification task, speakers use

long, descriptive noun phrases to first identify a referent, and these phrases become shorter

over time. They introduce the idea of a conversational model, where people communicate

and act collaboratively, establishing meaning moment-by-moment. This analysis differed

from the prevailing view that establishing reference is largely autonomous, where the speaker

has complete control and responsibility over referent determination, and the listener is a

passive understander.

Landau and Jackendoff (1993) added to the psychological research on object reference

by analyzing the geometric properties that underlie object nouns. The authors examine

which properties are utilized for distinguishing one object from another, and posit a few

key components of object reference. The idea most integral to their analysis of reference is

that intersecting axes define an object’s relation to space. These are outlined as follows:

Generating axis: This is an object’s principal axis, and can be seen as running through

the top and bottom of the object.

Orienting axes: These are secondary and orthogonal to the generating axis and to each



22

other (corresponding to the front/back and side/side axes).

Directed axes: These differentiate between the two ends of each axis, marking top/bottom

and front/back.

(Landau and Jackendoff, 1993: 221)

With these axes in place, the authors make a distinction between surface-type and

volume-type objects, suggesting that adjectives are used differently depending on which

category an object falls into. Surface-type objects are those that principally extend in

two dimensions (such as a record), while volume-type objects are those that extend in all

three (such as a box). The utilization of these two types to describe objects can be seen

in the fact that, for example, a record only needs to be wide to be called a big record (not

thick), while a box needs to be both wide and tall to be called a big cube (otherwise it

would just be called tall or wide).

Appropriate reference to parts of these objects can be seen as stemming from their axial

structure. For example, if an object is long and narrow, it has a horizontal generating axis

that is longer than the other axes, and can thus be said to have ends; the regions at the

termination of the axis. This idea provides a way to represent the human perception of

objects, and the generation of referring expressions may benefit from incorporating these

ideas of object properties.

2.5 Improvements Since the Introduction of the Incremental Algorithm

Since the publication of the Dale and Reiter (1995) paper, many steps have been made

towards advancing the Incremental Algorithm’s scope. Approaches to the generation of re-

ferring expressions have used the Incremental Algorithm to build reference to sets, generate

more complex kinds of modifiers, and expand linguistic naturalness.

Horacek (1997) attempted to capture more elements of human reference. This algorithm

introduced in this paper provides for situations where the Incremental Algorithm generates

unnatural utterances. The algorithm imposes a complexity limit, such that ambiguous (not

fully distinguishing) referring expressions are produced once the referring expression has
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reached a maximum number of descriptors. The algorithm is also extended to handle situa-

tions where no uniquely identifying expression can be reached, and does not add descriptors

that are inferable from the descriptors already chosen for a given distinguishing description.

Additionally, the algorithm rejects descriptors if they cannot be lexicalized with the given

linguistic resources.

A few years later, Stone (2000) extended the Incremental Algorithm for the generation

of reference to sets. This approach mirrors that taken to refer to singular entities, but

constructs the search space to apply to groups of items.

van Deemter (2002) extended the Incremental Algorithm to allow for descriptions that

involve more than just an intersective combination of properties. He explains that the

Incremental Algorithm does not handle cases where some attribute-value pairs holding true

of an entity are overlapping (for example, a ball may be both red and orange), and proposes

an approach where the algorithm checks if each attribute chosen with a particular value has

another value which identifies the same referent. If this is the case, the algorithm checks

if it is a subset of the first. If it is not, it includes the other value as well. This paper

also examines reference to sets, and using disjunctions as well as conjunctions of properties.

The descriptions his new algorithm generates are distinguishing descriptions using both

conjunctions of positive properties and negative disjunctions of properties.

Around this same time, Krahmer et al. (2003) developed a new kind of algorithm for

the generation of referring expressions. This algorithm is graph-based, which is in stark

contrast to most other work that attempts to refine the Incremental Algorithm without

fundamentally changing it. In their paper, the authors formalize a scene (consisting of a set

of objects with various properties and relations) as a labeled directed graph and describe

content selection as a subgraph construction problem. Using a graph-based approach allows

for better generation of relational expressions, referring expressions that include refer-

ences to other objects. This is possible because both properties and relations are formalized

in the same way: as edges in a graph.

Krahmer et al. construct referring expressions based on the kind of graph that can be

placed over a larger graph of the knowledge base. In this structure, arcs between referents
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correspond to relations, such as next to and left of, and concentric circles represent arcs

that stem from and return to the same referent, representing descriptors of that referent.

Weights for each circle dictate the order in which descriptors are chosen, where those with

the least weight are chosen first. In this way, distinguishing descriptions for referents can

be created by following a path to the referent.

Also in this period, Claire Gardent worked on a variety of approaches for the generation

of referring expressions, creating algorithms that generate maximally brief distinguishing

descriptions (Gardent, 2002), that do not rely on incremental speech production, and that

use a discourse model to derive the kinds of referring expressions that are used throughout

discourse (Gardent et al., 2004).

van Deemter (2004) continued work on extending the abilities of the Incremental Algo-

rithm. This was a continuation of earlier research on vagueness (van Deemter, 2000), and

utilized some of Krahmer et al.’s findings. Specifically, the difference between absolute

properties, properties that are inherent to the noun, and gradable properties, prop-

erties defined by the contrast set, was addressed. This paper looked at just generating

gradable properties, creating a way for the Incremental Algorithm to generate prenominal

modifiers that convey gradable information, such as big and thin. This approach assumes

absolute measurement values for the intended referent, and derives relative terms based on

the contrast set.

Areces et al. (2008) present a Description Logic approach to the generation of referring

expressions. This approach is faster than any algorithm to date, subdividing the items in the

context set into groups until a unique description for the intended referent is created. The

drawback to this approach is that it requires a post-processing step to convert the sometimes

multiple disjunctions into expressions that are more natural. It also does not always uniquely

identify referents, which is true of natural language, but it has not been shown that the

occasional ambiguity this algorithm produces reflects the referring expressions generated by

people.
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2.6 Prenominal Ordering of Adjectives

Referring Expression Generation algorithms often use a pre-specified listing (or weighting)

of referent properties, which are realized as modifiers. The approach I take in this thesis

does not use any such listing of properties, but instead utilizes a modifier type system. This

is introduced in Chapter 4. I will now turn to a brief discussion of previous approaches

at predicting prenominal adjective ordering based on adjective classification. Although

much work has looked specifically at adjectives, the results from these studies can likely be

generalized to other prenominal modifiers (nouns and verbs) as well.

It is often noted in studies on prenominal adjective ordering that the placement of

the adjectives in phrases such as the large red thing is preferable to the placement of the

adjectives in the phrase the red large thing. Many theories have been developed to account

for this kind of phenomenon, with most proposing a relationship between the semantics of

an adjective and its position prenominally. Modelling adjective ordering in noun phrases

is an integral part of generating natural referring expressions, and determining the factors

that affect adjective ordering is a problem that has persisted for millennia. Some approaches

date as far back as 350 BC (Panini, 350 BC, as cited in Cooper and Ross, 1975).

Whorf (1945) distinguishes two groups of adjectives, corresponding to inherent and

non-inherent qualities of the noun they modify. Whorf’s proposed ordering based on these

categories has non-inherent adjectives preceding inherent adjectives, thus large red house

is grammatical, exhibiting a common ordering of prenominal adjectives. Whorf points out

that the order may be reversed to make a balanced contrast, but only by changing the

normal stress pattern, and the form is “at once sensed as being reversed and peculiar”

(Whorf, 1945: 5).

A similar approach to predicting the ordering of adjectives based on the semantic rela-

tionship between adjective and head noun is discussed by Ziff (1960, as cited in Richards,

1975 and Wulff, 2003). Ziff explains that adjectives that are semantically close to the head

nouns they modify are tied to these nouns and so are selected with them (e.g., bright light,

playful child). Adjectives that are not tied to head nouns in this way will appear with a
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greater range of nouns (e.g., good, pretty), and so appear farther from the head noun. It

follows that adjectives that appear farther from the head noun are those that are applied

to a wider class of nouns, and have less semantic similarity to the head noun.

Vendler (1968) presented the natural order of adjectives as a function of transformational

operations applying to adjective classes. His claim is that the order of the application of

the transformational rules affects the order of adjectives prenominally. Classes of adjectives

in this view are grouped by their relationship to a proposed underlying verb. This is

characteristic of a transformational-based approach: Adjectives are seen as existing first in

predicate structures, where the sentence transforms into a nominalization that includes an

ordering of the adjectives.

Danks and Glucksberg (1971) concluded that prenominal adjective ordering is “deter-

mined by the pragmatic demands of the communication situation” (Danks and Glucksberg,

1971: 66). This is called the pragmatic communication rule. The idea developed by

the authors is that adjectives that are more discriminating precede less discriminating ones,

but the specific ordering of adjectives is dependent on the context.

It is therefore common to try to predict the ordering of prenominal adjectives by propos-

ing some relationship between the surface order and an underlying factor, usually semantics

but also syntactic transformational processes. Most work exploring prenominal adjective

order focuses on adjective semantics, proposing that adjectives are ordered according to a

scale. The exact nature of the scale differs, but research tends to favor an analysis where

adjectives closer to the head noun have a stronger association with it than adjectives that

are farther away. As will be discussed in Chapter 4, my approach to determining the or-

dering of prenominal modifiers backs away from proposing a relationship between modifier

position and any underlying factors, but does not preclude such interpretations.

2.7 Summary

Since 1989, many algorithms have been developed for the task of generating referring expres-

sions. The algorithms differ in their approach, focusing on computational efficiency, unique

identification, and psycholinguistic realism. Since 1995, generating natural reference has
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been a particularly active topic. Research on generating referring expressions has largely

utilized the Incremental Algorithm as a base, expanding its scope to handle a variety of

reference techniques.

Although research has focused on expansion to different kinds of linguistic phenomena,

very little work has been done on naturalness as such. Approaches for natural generation do

not diverge from the core tenets of the Incremental Algorithm. The nature of the adjectives

chosen for generation is usually treated as system-dependent, with no definitive work leading

the way as to what these adjectives are, or how they will be ordered or weighted. Further,

the interplay between adjective generation and contrast set analysis is an area that has yet

to be fully explored.

Exploration of the nature of human reference may result in different approaches for

generating referring expressions. These may fundamentally differ from the Incremental

Algorithm, aiming specifically at naturalness and not necessarily unique identification of

intended referents. Herein lies my own approach, and hopefully, the beginnings of research

to come.
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Chapter 3

THE ALGORITHM

3.1 Overview

This chapter introduces an algorithm for the generation of distinguishing reference.

Distinguishing reference is defined to be reference to pick out an entity from a group of

other entities. As discussed in Chapter 1 and Chapter 2, the intended referent is defined

to be the entity to be picked out, the context set is defined to be the group in which

it exists, and the contrast set is defined to be the group of entities not including the

intended referent. The contrast set can be composed of 0 or more entities; that is, the

intended referent in distinguishing reference may not have any other competing entities

from which to be distinguished.

The algorithm contains a content determination component, which may be implemented

in a Text Planner; a lexicalization component, which may be implemented in a Microplanner;

and a realization component, which may be implemented in a Surface Realizer. (See Section

1.1 for an overview of these components.) The content determination component is the core

of the algorithm. It creates a basic structure for generating distinguishing reference by

storing the properties true of the intended referent and analyzing the contrast set to derive

size descriptors. The microplanning component selects which descriptors in particular will

be used for the final expression. The surface realization component can then generate

distinguishing reference by ordering the modifiers selected to convey absolute properties. A

general flowchart of this algorithm is presented in Figure 3.1.

3.2 Main Ideas

The algorithm introduced in this chapter generates distinguishing reference for objects in

a visual presentation task. The specificity of this approach is intentional: If one kind of
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Figure 3.1: Flow Chart of Algorithm for Distinguishing Reference

distinguishing reference can be generated by obeying the basic tenets of this algorithm, then

it is a reasonable starting point for generating other kinds of distinguishing reference as well.

This is also motivated by the data available. Most studies on human-produced referring

expressions examine reference to objects presented visually, and drawing conclusions for

other kinds of reference requires further investigation. An evaluation of the algorithm is

presented in Chapter 5.

As discussed in Chapter 1, the goal of this algorithm is to generate natural sounding

reference. The ideas implemented to achieve this goal are:

1. Incremental examination of the contrast set

2. Descriptors split into those inherent to the intended referent and those derived from

the contrast set

3. Ordering of descriptors based on the order of the contrast set and a surface realization

component

Also as discussed in Chapter 1, it has been noted by those working on referring expression

generation that there is a fundamental difference between absolute properties (e.g., color)

and gradable properties (e.g., size) (Dale and Reiter, 1995; Krahmer et al., 2003; van

Deemter, 2004). The algorithm here separates these two kinds of properties and analyzes

them in different ways. This helps form natural sounding reference.

Absolute properties and gradable properties make up two separate inputs. The absolute

properties are converted directly to modifiers for generation. The gradable properties are
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computed incrementally for each item in the contrast set. It is assumed that the items in

the contrast set will be ordered by salience, where the first items to be ruled out are the

first items that are likely to be fixated on by a human in a presentation task.

3.3 Towards Generation

Before introducing the algorithm, I will discuss its placement in a Natural Language Gen-

eration system. (See Table 1.1 for a general outline of NLG systems.) Two main functions

from this algorithm create a structure for distinguishing reference. This structure is to be

passed to a Surface Realizer, which completes the algorithm. The Surface Realization step

is discussed in Chapter 4. In this chapter, the first two main functions of the algorithm

are discussed. The first solves what properties will be converted to prenominal modifiers.

This is the text planning section of the algorithm. The second functions picks out precisely

which modifiers will be used, where several different expressions can be created depending

on the linguistic personality desired. This is the microplanning section of the algorithm.

The output of the microplanning stage provides the surface realization component of the

algorithm with a list of ordered modifiers denoting gradable properties, followed by a list

of unordered modifiers denoting absolute properties, followed by the head noun. These un-

ordered modifiers are then ordered in a surface realization component by using the system’s

modifier type system.

This organization is different from the traditional approach to referring expression gen-

eration. Most referring expression generation algorithms do not impose clear delineations

between the stages of Text Planning, Microplanning, and Surface Realization. Algorithms

for generating referring expressions are generally treated as microplanning algorithms, al-

though they determine content as well as generate. This is likely because the final surface

string is so closely tied to the input properties. It is also due to the evidence that humans

generate referring expressions incrementally, meaning they do in fact determine content as

they generate.

The reason that this algorithm does not follow in this tradition is simple: Natural

language generation systems generally do not traverse the path from text planning to surface
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realization for every word or even every phrase. Instead, generation systems generally

analyze information in larger chunks, first text planning an entire sentence (or more), then

moving to microplanning, and then moving to surface realization. That is, natural language

generation systems generally analyze information that is generated as a portion of cohesive

text, instead of analyzing information phrase-by-phrase. This puts previous approaches

to referring expression generation in an odd place, and many have noted that despite the

usual flow of NLG systems, referring expression generation algorithms are a special case,

performing content determination – usually a task that takes place in the Text Planner –

as well as creating a structure that may be generated immediately by a Surface Realizer.1

The approach here actually allows the generation of referring expressions to be split

between the three tasks, following the flow of natural language generation. If a system were

constructed where each item chosen in the Text Planner immediately went through to the

Surface Realizer, comparable to human production, this approach could still generate natural

reference. The algorithm would have to be rearranged, but the basic ideas underlying it

still give rise to natural reference. In fact, changing the algorithm in this way would allow

it to perform even better. This is because gradable properties are ordered as an effect of

content determination, generally part of the Text Planning stage. Modifiers that denote

absolute properties, on the other hand, make up an entire group that are ordered in the

Surface Realization stage. This separation ensures that gradable properties always come

first in generation, followed by absolute properties. But the only reason that the two kinds

of properties are grouped together in the output of the text planning stage of my algorithm

(and subsequently in the microplanning stage) is to allow language generation to occur in

larger chunks. Preserving the separation between these two kinds of properties throughout

the algorithm would not be necessary if surface realization could proceed immediately after

deriving the first gradable property descriptor.

1It deserves note that referring expressions are not the only things that are generated incrementally, and
treating them as a special case outside of the general flow of NLG may not be merited. In fact, Pechmann
proposes that all utterances proceed incrementally. He focuses in particular on referring expressions, but
later work supports the idea that entire sentences proceed incrementally as well (cf. Griffin and Bock,
2000).
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3.4 Overview of the Algorithm

As has been noted, studies on human reference illustrate that people produce descriptions

of objects incrementally, first fixating on the object and then naming it as they fixate on the

objects that make up the surrounding context (Pechmann, 1989; Griffin and Bock, 2000). It

follows that the properties inherent to the object being named are considered as one chunk.

These are the absolute properties.

The other properties that are considered are those that are defined by the contrast set.

Following van Deemter (2000, 2004), I call these gradable properties. These are considered

in the order supplied by the system. This order should correspond to visual salience,2 but

in the current approach, it corresponds to proximity to the intended referent. In this way,

gradable properties are built up by incrementally analyzing each of the members of the

contrast set.

This approach fits in neatly with the approach suggested by Pechmann, who pointed out

that “...a red pencil is as red as a red car given the same redness, but a small hippopotamus

is already quite big compared to a big mouse” (99). The idea Pechmann presents is that

adjectives which are “more definite” in their meaning come closer to the noun than adjectives

that are not – as such, size precedes color. This is the definiteness of denotation principle,

proposed by Martin (1969a), and similar ideas have also been proposed by Whorf (1945),

Ziff (1960), and Danks and Glucksberg (1971) (see Chapter 2 for a review of this material).

The algorithm therefore utilizes two general modifier types: those that are defined by

the intended referent (absolute properties) and those that are defined by the contrast set

(gradable properties). With this in place, absolute properties are analyzed before gradable

properties. Once analysis of the gradable properties begins, the ordering of the final output

begins. This creates a structure where the “definite” or absolute modifiers come closer to

the head noun than those that are not.

The algorithm stores the absolute properties before it begins parsing the gradable prop-

erties. This speaks to the idea that the order in which people consider properties of items

2This may also be tactile salience, auditory salience, etc., dependent on the task.
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does not directly reflect the order of modifiers generated to describe those items. This asser-

tion is supported by the evidence: In Pechmann’s famous study, he found that people began

producing descriptions of an item as they scanned the contrast set, but, would produce a

color descriptor after they had produced relative descriptors. That is, the intended referent

was fixated on before the contrast set was considered, but modifiers relevant to the contrast

set were uttered before the modifiers relevant to the intended referent. The order in which

these two properties are analyzed does not effect the current algorithm, but if the algorithm

is altered to generate as it determines content, this separation must be preserved.

The algorithm also incorporates Thomas Pechmann’s finding that people include color

descriptors in 98% of their utterances to pick out an objects (Pechmann, 1989). It is assumed

that a color value is available in the absolute properties listed for each intended referent.

Inclusion of size values is also integrated into the algorithm, as size has been shown

to be a common property for distinguishing reference in visual tasks. For example, of the

modifiers provided for the intended referents of the TUNA corpus (Gatt, 2008), I found

that 25.56% (token proportion) of the top 10 modifiers are those denote size (the rest were

color modifiers).

The algorithm can derive up to three prenominal modifiers for each referent. This

constraint appears to best model human output in a distinguishing reference task. Again

analyzing the reference to objects available in the TUNA corpus, I found that no expressions

contain more than three prenominal modifiers.3 The three modifiers selected in this algo-

rithm are a combination of the modifiers derived from gradable properties and the modifiers

derived from absolute properties.

Other kinds of properties, such as spatial relations and those that give rise to embedded

prepositional phrases and relative clauses, may also be used to identify an item. The algo-

rithm would grow in robustness by extending reference to occur in these ways. The intention

of the approach outlined here is to capture the most common mechanics of reference.

3This isn’t too surprising, as the TUNA corpus only utilizes a handful of properties. But this serves as
a starting point. The recall of the approach is tested in Chapter 5, and the algorithm is shown to be
effective using this assumption.
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3.5 Inputs and Outputs

Examples of possible inputs and outputs for the algorithm are given in Table 3.1. Each input

corresponds to one or more outputs, depending on the system constraints incorporated into

the microplanning component of the algorithm. The table below lists a few of the expressions

that may be generated from each input.

Table 3.1: Example Input-Output Pairs

Referent Vector Contrast Vectors

Input: (0,0,0) lantern color:silver luminosity:shiny (common-value) lantern

(1,0,-1) lantern taller than wider than

Output: silver lantern | larger silver lantern |

large silver shiny lantern

Input: (0,0,0) ball color:red material:rubber shape:spiky (common-value) ball shape:round

(1,0,0) surfboard wider than longer than

Output: red ball | red rubber ball | spiky red ball |

spiky red rubber ball

3.5.1 Inputs

I assume two inputs to my algorithm. The first is the referent vector. I define a referent

vector r to be a triple <x, n, a> such that x is a unique and arbitrary identifier of the

vector, n is the entity expressed by the head noun, and a is a list of attribute-value pairs

expressing semantic properties for n. Figure 3.3 provides an example of what this looks

like.

The second input is the contrast vectors. I define a contrast vector c to be a triple <x,

n, g> such that x is a unique and arbitrary identifier of the vector, n is the entity expressed

by the head noun, and g is a list of gradable properties expressing relations between the

intended referent and the the contrast item. The first contrast vector is required to list any

gradable differences between the intended referent and the common forms for that referent.

This is the common-value form of the intended referent. Figure 3.4 provides an example

of what these look like.
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The common-value form of the intended referent allows for comparison of the intended

referent with what is generally true for that item. For example, if the intended referent

is a small cup, but it is not smaller than anything in the context set, the common-value

gradable properties in the first contrast vector are used to derive the adjective small. In this

way, the contrast vectors provide for comparison of the intended referent to the immediate

contrast set as well as to general common values of the referent.

3.5.2 Outputs

The outputs from the first two main functions of the algorithm are structures separating the

two kinds of modifiers: those created from the absolute properties, the absolute modifiers,

and those created from the gradable properties, the gradable modifiers. The output of the

text planning function provides a structure from which many expressions may be generated;

the output of the microplanning function provides a structure that corresponds to a single

referring expression. This structure is then passed to the final surface realization component,

which orders the absolute modifiers before generation.

3.6 System Knowledge

To analyze these absolute properties, the system must provide background knowledge that

associates the head noun to common values for the given properties (if common properties

exist). With this, modifiers that convey absolute properties are chosen if they are not

already denoted by the head noun. For example, the modifier round will not be used if the

head noun is ball. Similarly, the color constraint can be relaxed if they are definitive of the

head noun; an orange will generally not be referred to as an orange orange.4

To analyze the gradable properties, the system must provide background knowledge

that defines whether each item is volume-type or object-type. This approach allows the

algorithm to select which contrast items are used to derive modifiers. As gradable properties

are mapped to modifiers, the system is also used to determine whether each modifier is

4Although cases where this does happen certainly occur, they are likely examples of describing reference,
not distinguishing reference.
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contradictory to those already chosen.

I therefore require that the system be able to provide the following background knowl-

edge:

1. The properties that are generally true of the intended referent

2. Whether each noun is a volume-type or surface-type entity

3. Mappings between gradable properties and modifiers

4. Which modifiers are contradictory, or antonyms

These points are discussed in greater detail in the following sections. Knowledge of

common properties is used such that only those properties that are not generally true will

be chosen. These properties can be provided in a dictionary, where for each entity common

attribute-value pairs are listed. The process of mapping between gradable properties and

their modifiers will be discussed, and a representation of the mapping for gradable size

properties and modifiers is given in Appendix C. Knowledge of contradictions is used as

part of the incremental process, where if a newly derived descriptor contradicts one already

chosen, that new descriptor is not included in the final output.

3.7 The Referent Vector and the Contrast Vectors

In this section I discuss the two main inputs to the algorithm in detail. These are the

referent vector and the contrast vectors. Example inputs for distinguishing reference of

the green box (the box on the right) in Figure 3.2 are given in Figure 3.3 and Figure 3.4.

The referent vector is relatively simple and is only discussed briefly. The contrast vectors

provide information that is used to derive modifiers by the algorithm, and so require a

detailed discussion. This is presented here.

The format of the referent vector and contrast vectors convey all the information about

each item, with one item defined per line. For both kinds of vectors, the first item is an

identifier, or instance name. In the present system, these identifiers have internal structure
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Figure 3.2: Example Input Domain

(0,0,0) box shape:open color:green material:velvet

Figure 3.3: Example Intended Referent Vector

(common-value) box

(-1,1,0) box taller_than wider_than longer_than

(-1,0,0) box

Figure 3.4: Example Contrast Set Vectors
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representing the locations in physical space of the referents, but this information is not cur-

rently exploited. The second item identifies the head noun to refer to the entity. Following

this, the next items in each vector convey the properties that will be considered. These are

absolute properties for the referent vector, and gradable properties for the contrast vectors.

The values in the attribute-value pairs of the referent vector are essentially identical to

the absolute modifiers they produce. The properties of the contrast set, however, are stated

as relative terms, and so must be mapped by the algorithm to specific gradable modifiers.

This is done by incrementally analyzing each contrast vector in the order provided. If the

intended referent and the contrast item are the same kind of entity (volume-type or surface-

type, further discussed below), then the properties defined in the vector for that contrast

item are used to derive modifiers.

Those modifiers that directly contradict ones that have already been selected may be

used to form a new modifier that mediates between the two. For example, medium-sized

may be generated if the modifiers big and small have been selected.5 Modifiers that directly

contradict one another form a strict contradiction, where the meaning of one is opposite

to the meaning of another.

Those modifiers that indirectly contradict modifiers that have already been selected are

thrown out. This ensures that the first elements in the contrast set have a greater effect on

the modifiers generated than the later elements. Modifiers that indirectly contradict one

another form a loose contradiction, where the meaning of one mitigates the use of the

other. Small and short form a loose contradiction. The following example illustrates the

reason for this approach.

3.7.1 The Contrast Vector

Consider a scene with four animals: A pig, a duck, a mouse, and a horse. This is presented

in Figure 3.5. The task is to pick out the duck. Generally speaking, mice are smaller than

ducks, ducks are smaller than pigs, and horses are bigger than all of them. Now suppose

5This method should be improved on with further work on when people treat two (or more) entities as
one contrast item. Ideally for an incremental approach, each modifier is derived from one contrast item.
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that the pig and duck are standing close to one another, while the mouse and the horse are

in the corner. Now suppose that the pig is smaller than the duck, which is slightly smaller

than the mouse, and the horse is the smallest of all. In essence, their sizes are reversed.

This means that the relation between duck and pig yields the adjective big, the relation

between duck and horse yields the adjective big, and the relationship between duck and

mouse yields the adjective small. If the contrast set vector file is ordered such that the pig

is the first item from the contrast set, the mouse is the second element, and the horse is the

third element, then the adjective big will be chosen first. When the vector corresponding to

the mouse is analyzed, small will be chosen as a possible adjective. However, this is a strict

contradiction to the already chosen big, and so the adjective to describe the duck becomes

medium-sized. When the vector corresponding to the horse is analyzed, big again will be

chosen as a possible adjective. However, this is a loose contradiction to the already chosen

medium-sized, and as such is thrown out. In this way, the order in which the contrast set

is analyzed determines the modifiers that are chosen for generation. The final description

from this process will thus be something like the medium-sized duck.

Figure 3.5: Example Scene: a Pig, a Duck, a Mouse, and a Horse

This example also serves to clarify an important point. The contrast set (provided as

contrast vectors) is ordered in terms of proximity, but this ordering is here in lieu of salience.
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The order in which the contrast items are considered should be in the order determined by

the context. For example, in a visual task, the contrast items should be ordered according to

the order people generally scan a scene. Studies have shown that it is difficult to generalize

patterns of visual fixation (and therefore which items are visually salient), as different

pictures yield vastly different results (Antes, 1974; Loftus and Mackworth, 1978; Rayner

and Pollatsek, 1992). Until these details are better understood, proximity seems a reasonable

first approach.

When the elements of salience are better understood, perhaps it will be the case that the

largest items in a scene are the most visually salient, and so should appear at the beginning

of the contrast set vector file. I leave this issue open-ended for now, and put in place

the processes for analyzing the kind of information necessary to generate natural reference,

however salience may be defined.

The gradable relations I focus on in particular are those for size. Three major axes for

relative size are assumed, as described in Landau and Jackendoff (1993) (see Chapter 2).

This gives information about the height, width, and depth of the intended referent relative

to each contrast item. Relative location, weight, and other such gradable properties may

be used in distinguishing reference as well.

I also follow Landau and Jackendoff in distinguishing between surface-type entities and

volume-type entities. As discussed in Chapter 2, surface-type entities are those that

principally extend in two dimensions (such as a record), while volume-type entities are

those that extend in all three (such as a box). These distinctions help guide the selection

of modifiers to refer to an entity: Surface-type entities need only extend in one dimension

to be called big, while volume-type entities must extend in two.

The properties captured in the contrast vectors are those that show a significantly larger

or smaller measurement on an axis. Determining exactly what is significant is beyond

the scope of the current work. However, Hermann and Deutsch (1976, as reported in

van Deemter, 2004) have provided some insight into the nature of this. They show that

differences on one axis that are much greater than differences on another are most likely to

be chosen as a property in reference.
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It seems reasonable to propose that gradable properties denoting size be provided in

the case where the difference on one axis between a contrast item and an intended referent

is much larger than the difference on another axis, or much larger than a common value for

the referent. Further investigation into gradable properties in particular is necessary for the

creation of the contrast vectors. For now, they serve as a starting point for the algorithm.

Different gradable properties result in different modifiers. For example, when the gen-

erating axis of the intended referent is significantly larger than that of the contrast item,

the relation taller than is provided. This can be mapped to the adjective tall. As men-

tioned above, the selected modifiers depend on the type (volume-type or surface-type) of

the referent. Therefore, in order to derive an adjective like large for a volume-type object,

at least two dimensions must have a gradable property that expresses a larger size. For a

surface-type object, extension in only one dimension is necessary. The mappings between

gradable properties and modifiers are provided in Appendix C.

Again, I include as the first member of the contrast set a common-value form of the in-

tended referent. This vector lists the gradable differences between the intended referent and

a common-value form of the referent, providing a way to incorporate real-world knowledge

about referents. This has the effect of ensuring, for example, big lamp can be generated if

the lamp is particularly large, regardless of the other items in the set.

Only contrast items that are of the same type are used to derive modifiers from the

contrast set. In this way, only volume-type contrast items are used to derive size modifiers

for volume-type intended referents (and similarly for surface-type objects). When the al-

gorithm encounters a contrast item that is not of the same type as the intended referent,

it skips to the next contrast item. When the algorithm encounters a contrast item (other

than the common-value item) that is not only the same type but also has the same head

noun, comparative forms can be generated (e.g., the bigger tree).

3.8 The Algorithm

The text planning and microplanning sections of the algorithm are given in Figures 3.6 and
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CreateRefExp(A, C)

1: abs ← {}
2: rels ← {}
3: type ← GetType(head noun)
4: for each <att, val> ∈ referent vector A do
5: if not CommonValue(<att, val>, head noun) then
6: abs ← abs ∪ {<att, val>}
7: end if
8: end for
9: for each contrast vector Ci ∈ contrast vectors C do

10: typeCi
← GetType(head nounCi

)
11: rels ← rels ∪ FindRelProps(Ci, rels, type, head noun, typeCi

, head nounCi
)

12: end for
13: L ← {rels, abs, head noun}
14: return L

FindRelProps(Ci, rels, head noun, head nounCi
)

1: modifiers ← GetDescriptors(Ci, type, head noun, typeCi
, head nounCi

)
2: return RemoveContradictions(modifiers, rels)

RemoveContradictions(modifiers, rels)

1: new modifiers ← {}
2: for each modifier Xi ∈ rels do
3: for each modifier Yj ∈ modifiers do
4: if modifier Xi and Yj are a contradiction then
5: if they form a strict contradiction then
6: new modifiers ← new modifiers ∪ {medium-sized}
7: end if
8: else
9: new modifiers ← new modifiers ∪ Yj

10: end if
11: end for
12: end for
13: return new modifiers

Figure 3.6: Text Planning: Algorithm for Distinguishing Reference
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ChooseRefExp(L)

1: rels vals ⊆ gradable values
2: abs vals ⊆ values in absolute values
3: such that:
4: |rels vals| + |abs vals| ≤ 3
5: if <color, valuecolor> ∈ absolute values then
6: <valuecolor> ∈ abs vals
7: end if
8: if gradable values 6= ∅ then
9: if |abs vals| > 1 then

10: |rels vals| ≥ 1
11: else if |abs vals| + |rels vals| = 1 and <valuecolor> 6∈ abs vals then
12: |rels vals| = 1
13: end if
14: end if
15: for any size value ∈ rels vals in comparative form do
16: choose one:
17: size value ← base form
18: size value ← size value
19: end for
20: re ← {rels vals, abs vals, head noun}
21: return re

Figure 3.7: Microplanning: Algorithm for Distinguishing Reference
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3.7. The first main function is given as CreateRefExp. This takes as input the intended

referent vector (A) and the contrast vectors (C). Lines 1 and 2 set the variables to store the

absolute properties (abs) and gradable modifiers (rels). Line 3 sets a variable (type) to the

type value for the head noun of the intended referent (for example, volume-type). In lines

4 through 8, the function iterates through the absolute properties of the intended referent

vector and stores those properties that are not a common-value form in a list. In lines 9

through 12, the function iterates through the contrast vectors and calls to FindRelProps to

return the modifiers that can be derived from these vectors. The final structure (L) is a

list with the ordered gradable modifiers, the absolute properties, and the head noun of the

intended referent.

This structure is passed to the second main function, ChooseRefExp. Lines 1 through

10 select the specific gradable modifiers (rels vals) and absolute modifiers (abs vals) to be

used in the final referring expression. Line 4 imposes the constraint that no more than

three modifiers are selected, lines 5 through 7 impose the constraint that a color modifier

is included if it exists, and lines 8 through 14 impose the constraint that a size modifier

is included if it exists and there is no color modifier or more than just a color modifier is

desired. Lines 15 through 19 impose the constraint that a size value may appear in either

comparative form or base form. This structure (re) contains the ordered gradable modifiers,

the unordered absolute modifiers, and the head noun that may be passed to the surface

realization stage.

The first step in the algorithm is therefore to parse the input vector and check for

common values, storing those values that are not already defined for the head noun (e.g., if

shape:‘round’ is provided as an input property, round will not be used if the head noun is

ball). The referent vector thus provides the basis for generating a description that something

is red, or wooden.

The second step in the algorithm is to parse the gradable properties represented in

the contrast vectors, which convey size relations. These are parsed in the order they are

provided. The contrast vectors thus provide the basis for generating a description that

something is tall, thin, or big. With this approach, the relative size of the referent to each
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surrounding member is used instead of exact measurements on each item.

As the analysis of the contrast set begins, so too does the construction of all the possible

referring expressions. With the absolute properties of the item already stored, the ordering

of gradable properties begin to define the final output. The algorithm iterates through each

item in the contrast set. For each contrast item, if its type is the same as the intended

referent type, a modifier can be derived from its listed gradable properties. The algorithm

then proceeds to the next contrast item.

Contradictory information is handled by the RemoveContradictions function, which takes

as input the modifiers defined by the current contrast item, and the list of modifiers that

are already part of the referring expression structure being created. It returns a new list of

modifiers that is stripped of any contradictory information. If any of the newly considered

modifiers form strict contradictions to those in place (for example, if small has already been

chosen, and large is encountered), the modifier medium-sized replaces the contradictory

modifier. If any of the newly considered modifiers form loose contradictions (for example,

if small has already been chosen, and short is encountered), they are simply not included in

the new list. The selected modifiers are then appended to the referring expression structure.

After the contrast set has provided for the generation of these modifiers, the absolute

property tuples and gradable modifiers are stored. A structure with all of these modifiers

along with the head noun are then passed in a structure to the second major component of

this algorithm. This appears in Figure 3.7 as ChooseRefExp.

ChooseRefExp selects which modifiers are included such that the total number of mod-

ifiers selected is ≤ 3. Evidence shows that there is a clear preference in natural language

for including color and size modifiers, and so preference is given for inclusion of these

properties. If a value for color is passed from CreateRefExp, this value is selected. To

create a referring expression with more than one modifier, if a size value is passed from

CreateRefExp, then it is selected. To create a referring expression with three modifiers, the

longest expression this algorithm generates, a third modifier may be selected from either

the gradable modifiers or the absolute modifiers.

The final referring expression structure can then be passed to a Surface Realizer, where
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the modifiers conveying absolute properties can be ordered using a type system. The re-

ferring expression structure enforces a separation between absolute modifiers and gradable

modifiers. This way, the Surface Realizer can easily separate out and order only the absolute

modifiers.

The algorithm calls to three smaller functions to be provided by the system, Common-

Value, GetType, and GetDescriptors. CommonValue checks if the attribute-value pair is not

already denoted by the head noun. If the value is denoted, the function returns true. If it

is not denoted, the function returns false. GetType returns whether the referent is volume-

type or surface-type. GetDescriptors takes as input the list of relations and the item’s type

value, and maps those relations to modifiers as defined in the modifier-relation map and

outlined in Appendix C. If an intended referent and the contrast item to which it is being

compared are of the same head noun, a comparative form is generated. If this contrast item

is the common-value form of the intended referent, a comparative form is not generated.

3.9 Algorithm Summary

The sections of this algorithm introduced here can be schematized as follows:

System Knowledge: Common value representations of referents and their types (volume-

type or surface-type), mappings between gradable properties and modifiers, knowledge

of antonyms

Inputs: A referent vector and contrast vectors

Computation: Non-incremental analysis of absolute properties to derive absolute modi-

fiers; incremental analysis of contrast items and their corresponding gradable proper-

ties to derive gradable modifiers

Outputs: A referring expression structure to be realized by a Surface Realization module

using a modifier type system
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3.10 Example

I will work through one specific example in order to illustrate how the algorithm works.

Consider the data given above, with the referent vector in Figure 3.3 and the contrast

vectors in Figure 3.4. The algorithm takes as input the referent vector and the contrast

vectors. Some sample input and output are given in Table 3.1. The modifier mapping and

contradictions file should be provided by the system.

The first step in the algorithm is to acquire the head noun and determine its type. This

is the second element in the referent vector file. In this example, the head noun is box which

is a volume-type object.

The next step is to gather the attribute-value pairs defined in the referent vector. These

follow the head noun. For each attribute-value pair, the algorithm checks if the value of

that attribute is generally true of the head noun. If it is not, the attribute-value pair is

stored. In this example, none of the attribute-value pairs are generally true of the head

noun. And so, shape:‘open’, color:‘green’, and material:‘velvet’ are stored in a list.

Once these absolute values are stored, the algorithm moves on to incremental analysis

of the contrast set. For each contrast item that is of the same type (volume-type), the

algorithm gathers the gradable properties. In this example, the first contrast item, the

common-value comparison for the intended referent, contains no information: There are no

common values for a box’s size. The algorithm then moves on to the next contrast vector.

This provides the relations taller than, wider than, and longer than.

The algorithm then maps these gradable properties to a modifier (or modifiers), utilizing

the type information to guide how many relations are necessary to create a more general

modifier, like big. If the two entities being compared have the same head noun, and the

contrast item is not the common-value vector, then comparative forms of the modifiers are

created – for example, shorter and bigger. Superlative forms can be created when a contrast

item is a set. This problem is left unaddressed for now.

In this example, the intended referent is defined as taller than, wider than, and longer

than the first contrast item. Where the corresponding adjectives tall, wide, and long could
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be returned, the modifier mapping provides for the adjective big. This is because all three re-

lations indicate a larger measurement. Had the vector provided the information taller than,

thinner than, longer than, the adjectives tall, thin, and long would be returned. In this

way, gradable properties for a single contrast item may be mapped to one, two, or three

modifiers.

The next step is to see if the modifier(s) found contradict any of the modifiers chosen

previously. For example, if the algorithm has already chosen the adjective small, it should

not now choose the adjective big. As this is the first modifier in the example, there are

no contradictions and big is added. This can be realized as big or large, and because the

contrast item that generates this modifier has the same head noun, bigger or larger.

The algorithm then moves on to the next contrast item. It has the same type value, so

the relations can be analyzed. But, there are no relations: The contrast item’s size does

not significantly differ from the intended referent in any way. No gradable properties are

analyzed, and no new modifiers are gathered.

At this point, the text planning part of the algorithm is done. The referring expression

structure returned is a list composed of the two smaller lists of gradable modifiers and

absolute modifiers followed by the head noun and type. For this example, the structure is

given in Figure 3.8.

The second part of the algorithm then selects which modifiers it will use. Because there

is no common color value for a box, inclusion of a color modifier is mandated. If more

than one modifier is desired, the inclusion of a size modifier is mandated. Possible structures

for this is given in Figure 3.9.

The structure returned in CreateRefExp provides the means for realizing a variety of

referring expressions, once the absolute properties are ordered by the surface realization

component. This is discussed in Chapter 4. The possible expressions that can be derived

for this example are given in Figure 3.10.

[[‘big’], [color:‘green’, shape:‘open’, material:‘velvet’], ‘box’]

Figure 3.8: Text Planning Example Referring Expression Structure
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[[], [‘green’], ‘box’] [[‘big’], [‘green’], ‘box’]
[[‘large’], [‘green’], ‘box’] [[‘big’], [‘green’, ‘velvet’], ‘box’]

[[‘large’], [‘green’, ‘velvet’], ‘box’] [[‘large’], [‘green’, ‘open’], ‘box’]
[[‘big’], [‘green’, ‘open’], ‘box’]

Figure 3.9: Microplanning Example Referring Expression Structures

green box big green box
large green box big green velvet box

large green velvet box large green open box
big green open box

Figure 3.10: Example Generated Referring Expressions

3.11 Example Implementation

Figure 3.11: Example ILEX Input

To outline how this algorithm may be implemented in an existing system, I will discuss

the NLG system ILEX (O’Donnell, 2000). This system generates information on museum

objects, and so is a suitable example of the kinds of reference my own algorithm generates.
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(say example-1

:is propose

:proposition leaving

:relevant-roles ( (leaving Actor)

(causation Head

Dependent)

(arrival Actor))

:identifiable-entities (John Mary))

Figure 3.12: Speech Act Input for WAG (O’Donnell, 2006: 7)

The implementation I outline serves as a general example. Much more work is necessary in

order to integrate the approach I outline in this thesis into any system.

ILEX was developed using an exhibit database from the National Museum of Scotland.

The information that serves as input to this system is represented in database format, as

shown in Figure 3.11. ILEX uses a mix of canned text and the sentence generation system

WAG (O’Donnell, 1996) in order to generate descriptions of items from these database

structures.

The input specification for the WAG sentence generator is a speech act. An example of

this is shown in Figure 3.12. The speech act structure can then realized as a sentence; in

this example, “Mary left because John arrived”.

To implement the proposed algorithm into such a system, the Text Planning component

of ILEX first must construct a structure from the database specification (see Figure 3.11)

to feed as input to the algorithm. This would correspond to the referent vector in Figure

3.3. Similar database entries could be used to construct the contrast vectors in Figure 3.4.

The content determination function of the algorithm I have outlined then may plan

the text for reference to this object, as discussed above. The microplanning section of the

algorithm maps the gradable modifiers, selected absolute properties, and head noun to a

linguistic structure specifying the head noun and modifiers. This structure may be mapped

directly to the identifiable-entities structure in the speech act formalism used by ILEX. An

example is given in Figure 3.13.
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ILEX then passes this structure through the WAG Surface Realizer, where the absolute

properties can be ordered using the modifier type system. From this, a final referring

expression is generated. In this example, the phrase large green open box may be created.

(say :identifiable-entities ( (gradable-properties large)

(absolute-properties green open)

box))

Figure 3.13: Identifiable Entity for Surface Realization

3.12 Discussion

The approach to naturalness taken here differs in several specific ways from the approaches

taken to-date. These are:

1. Incremental examination of the contrast set (not incremental examination of attribute-

value pairs)

2. Descriptors split into those inherent to the intended referent (absolute properties) and

those derived from the contrast set (gradable properties)

3. Ordering of descriptors based on the order of the contrast set and a surface realization

component (not by a predefined list of properties)

4. Mandated inclusion of a color modifier if the color modifier is not definitive of the

object

5. Inclusion of a size modifier if it exists and more than a color modifier is desired

The first item is integral to the generation of natural reference. The second seems well-

supported by what we know so far about human generation of referring expressions, and

falls out from the first. The third is a reasonable approach for handling the prior two items.

The last reflects the findings from corpus and psychological studies.
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3.13 Summary

The approach to generation outlined here is a departure from much of the work done in the

field, most notably the Incremental Algorithm (Dale and Reiter, 1995) and the extensions

to this algorithm that assume the same fundamental input (Horacek, 1997; Stone, 2000;

van Deemter, 2002; Gardent, 2004). As stated above, the notion of utilizing as input a

predefined ordering of properties, where the ordering of the input determines the ordering

of the output, is abandoned. In its place, two vectors with different kinds of properties

serve as input. The ordering of the modifiers derived from the first vector is dependent

on a surface realization component. The ordering of the modifiers in the second vector is

dependent on the ordering of the actual contrast items.

Mirroring the general flow of natural language generation, the algorithm outlined here

provides for integration into generation systems. The functions introduced here instanti-

ate the incremental approach reported by Pechmann (1989), using the two basic kinds of

modifiers noted and discussed by many researchers (Whorf, 1945; Pechmann, 1989; Dale

and Reiter, 1995; Krahmer et al., 2003; van Deemter, 2004). The model developed from

these ideas is shown to be capable of generating a wide range of natural sounding referring

expressions in Chapter 5.
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Chapter 4

ORDERING MODIFIERS FOR REFERENTS

4.1 Introduction

In this chapter, I establish and evaluate a type system that can be used to order modifiers

in a Surface Realizer. The application of this type system is not limited to the generation

of distinguishing reference, but also to describing reference and any noun phrase with mod-

ifiers prenominally. Ordering modifiers based on the types introduced here completes the

algorithm introduced in Chapter 3. Predictions of prenominal modifier ordering based on

these classes are shown to be robust and accurate.

The algorithm that I have developed for distinguishing reference may order the absolute

properties according to the type ordering outlined in Table 4.6. Any other noun phrase

with prenominal modifiers may utilize this type system as well. Ordering modifiers based

on these types is a relatively simple task. This chapter therefore takes a break from the

discussion of the algorithm, and outlines how the type system is created.

The work here diverges from the approaches commonly employed in modifier (usually ad-

jective) classification by assuming no underlying relationship between semantics and syntax

or morphology and syntax. Although these certainly may exist, the basis for determining

modifier classes here does not rely on any such proposed relationship. This provides a

starting point for further research by outlining some main ideas on how to approach the

problem.

The chapter begins with a discussion of the relationship between modifier ordering and

referring expression generation. I then turn to a presentation of the ideas behind the modifier

type system developed here. Following this, I present the methodology used in the current

study, discussing the corpus involved and the basic modules used in the process. This is

followed with a discussion of preliminary results, and an outline of possible future work in



54

the area.

4.2 The Model and the Problem

Generating referring expressions in part requires generating noun modifiers. These modifiers

must appear in an order that sounds natural and mimics human natural language use. For

example, consider the alternation below as given in Vendler (1968).

(4) big beautiful white wooden house

(5) ?white wooden beautiful big house

(6) comfortable red chair

(7) ?red comfortable chair

(8) big rectangular green Chinese silk carpet

(9) ?Chinese big silk green rectangular carpet

Figure 4.1: Grammatical Adjective Alternations (Vendler, 1968: 122)

Some combinations of modifiers before a noun sound perfectly natural, while other combi-

nations – using the very same modifiers – sound marked, or at least less common.

Almost all referring expression generation algorithms rely on the availability of a pre-

defined ordering of properties (Dale and Reiter, 1995; van Deemter, 2002; Krahmer et al.,

2003). This requires that for every referent, an ordered listing of all the modifiers that can

apply to it must be created before referring expression generation begins. This provides a

direct mapping between the ordering of attribute-value pairs in input and the prenominal

modifier ordering in output.

Deriving the ordering of attribute-value pairs is not a simple task, but rather one that

requires intricate work for every referent, for every combination of modifiers. Ordering

individual modifiers by hand can lead to accurate generation results. However, proceeding

with generation in this way seems to miss two clear generalizations:

1. Not all modifiers have equally stringent ordering preferences.
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2. Modifiers can be grouped into types indicative of their ordering preferences.

The difficulty with capturing the ordering of modifiers stems from the problem of data

sparsity. In the example above, the modifier silk may be rare enough in any corpus that

finding it in combination with another modifier, in order to create a generalization about

its ordering constraints, is nearly impossible. Malouf (2000) examined the first million

sentences of the British National Corpus and found only one sequence of adjectives for

every twenty sentences. With sequences of adjectives occurring so rarely, the chances of

finding information on any particular modifier is small. The data is just too sparse.

Because of this, the process of classifying modifiers for predicting order is especially

problematic. Most approaches assume an underlying relationship between semantics and

prenominal position (cf. Whorf, 1945; Ziff, 1960; Martin, 1969a and 1969b; Bever, 1970;

Danks and Glucksberg, 1971; see Chapter 2 for more). These approaches can be character-

ized as predicting modifier order based on degrees of semantic closeness to the noun. This

follows what is known as Behaghel’s First Law (Behaghel, 1930):

Word groups: What belongs together mentally is placed close together syntac-

tically.

(Clark and Clark, 1977: 545)

However, there is disagreement on the exact qualities that affect position. These theories

are also difficult to implement, as they require determining the semantic properties of each

modifier used, relative to each context in which it occurs. If a modifier classification scheme

is to be implemented, it should be robust enough to handle a wide variety of modifiers and

flexible enough to allow different orderings.

4.3 Towards a Solution

In an attempt to create a flexible system capable of predicting a wide variety of orderings,

the approach to modifier classification presented here is based on modifier distribution.

Modifiers are classified by where they tend to appear prenominally, in a system that lends

itself to bootstrapping for unseen modifiers. This classification scheme allows rigid as well
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as more loose orders (compare big red ball and ?red big ball with white floppy hat and floppy

white hat). It is not based on any mapping between position and semantics, morphology, or

phonology, but does not exclude any such relationship in the classification: The classification

scheme builds on what there is direct evidence for, independent of why each modifier appears

where it does.

The first step in this approach is to use a modifier-rich corpus. For this, I use the massive

Google Web 1T 5-gram corpus (Brants and Franz, 2006). The second step is to use a lexical

database to leverage information. For this, I use WordNet (Miller, 2006), which provides

information on whether words have an adjective sense, noun sense, verb sense, or adverb

sense. This was chosen instead of a parser or a POS (Part-of-Speech) tagger because the

corpus contains collections of N-Grams, not sentences. Both POS taggers and parsers rely

on surrounding tag contexts and joint conditioning on multiple consecutive words in order

to derive tags (Toutanova et al., 2003), but WordNet allows analysis on a word-by-word

basis, which is helpful when training on N-Grams. WordNet also provides information on

any word that may be used as a prenominal modifier by marking it as having an adjective

sense. This is regardless of whether the word would generally be tagged as a verb or noun,

and so facilitates the extraction of words that can be used as modifiers. So, for example,

square metal plate can be extracted as Adj Adj Noun, where the prenominal positions of

square and metal may be used to determine position preferences for those modifiers, but

plate metal will only be extracted as Noun Adj or Noun Noun, and plate will not be stored

as a modifier.

The decision not to use the British National Corpus or the Wall Street Journal, which

are common in most NLP tasks, was due to their relatively low frequency of adjectives, as

discussed above. Using a corpus rich in prenominal modifiers ensures that some general-

izations about the distribution of modifiers can be made. It also provides information on a

greater number of modifiers, allowing more modifiers to be classified.

Some basic assumptions are made as a starting point. The approach here builds on

an idea that nouns will rarely have more than four preceding modifiers. This allows me

to assume four possible modifier positions and construct probabilities of modifier position
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based on where different modifiers occur. The algorithm introduced in Chapter 3 only

generates up to three modifiers to best model what people tend to do; this corpus study

looks at up to four in order to develop a more complete model of ordering.

4.3.1 Classifying Modifiers

The method used to classify modifiers is as outlined here:

1. Select or construct a modifier-rich corpus.

2. Extract all noun phrases that consist of a head noun preceded by more than one

modifier, using WordNet to find all consecutive modifiers immediately followed by a

noun.

3. Store the counts and relative position of each modifier.

4. Convert this into probabilities in vector file format.

5. Classify modifiers based on the positions that have the highest probabilities.

Examples of the files in Step 3 and 4 are given in Table 4.1 and Table 4.2.

Table 4.1: Example Modifier Classification Intermediate File: Step 3

popliteal one 2023
resonant two 87 three 82 four 16
unscientific one 521 two 59 three 59
omnipotent three 84

Table 4.2: Example Modifier Classification Intermediate File: Step 4

popliteal one 1.0
resonant two 0.47 three 0.44 four 0.09
unscientific one 0.82 two 0.09 three 0.09
omnipotent three 1.0
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4.4 Materials

To create the training and test data, a corpus and a lexical database were used. Several

programs were constructed to train and analyze the information provided by these data.

Below, I outline the details of these data and code modules.

4.4.1 Data

Google’s Web 1T 5-gram – (Brants and Franz, 2006). A collection of N-Grams (1-

Grams, 2-Grams, 3-Grams, 4-Grams, and 5-Grams) from web pages made avail-

able by the Linguistic Data Consortium. To create this corpus, Google processed

1,024,908,267,229 words of running text from websites. Frequency counts were calcu-

lated for N-Grams that appear at least 40 times. Words that appear less than 200

times were discarded, yielding 13,588,391 unique word types. These form a total of

1,176,470,663 5-Grams.

WordNet – (Miller, 2006). This is a large lexical database of English, where words are

grouped into sets of “cognitive synonyms” or synsets. This can be used to mark

words as adjectives and nouns.

4.4.2 Code Modules

The following five components were developed (in Python) for this project.

Modifier Extractor – This program takes as input the Google 5-gram corpus, and returns

all the noun phrases immediately preceded by prenominal modifiers, along with their

frequency counts. These frequency counts are used for training, but not for testing.

This program only returns those N-Grams that are composed of consecutive modifiers

immediately followed by a noun.1 Nouns that are preceded by only one modifier are

not considered, as these phrases do not provide insight into the ordering of modifiers

prenominally.

1That is, this program returns 3-Grams, 4-Grams, and 5-Grams extracted from the 5-Grams.
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input: Google 5-Gram Corpus

output: List of modifier-rich noun phrases and their frequencies

Modifier Organizer – This program takes as input lists of noun phrases with prenominal

modifiers, and filters some of the words commonly tagged as modifiers by WordNet.

These are individual letters, words that have a greater amount of senses as a noun or

verb than as an adjective, and words that have adverbial and prepositional readings.

A list of what was filtered is available in Appendix B. This returns a vector with

frequency counts for all positions in which each observed modifier occurs.

input: Modifier-rich noun phrases and their frequencies

output: Vector file with distributional information for each modifier position

Modifier Classifier – This program takes as input a vector file with distributional in-

formation for each modifier’s position, and from this determines the classification for

each modifier.

input: Vector file with distributional information for each modifier position

output: Vector file with each modifier associated to a class

Prenominal Modifier Ordering Predictor – This program takes as input two files: A

vector file with each modifier associated to a class, and a list of modifier-rich noun

phrases (for testing). The vector file assigns a class to each modifier seen in the

testing data, and predicts the ordering for all the modifiers that appear prenominally.

A discussion of the ordering is given below. This program then compares its predicted

ordering of modifiers prenominally to the observed ordering of modifiers prenominally.

It returns Precision and Recall values for its predictions.

input: Vector file with each modifier associated to a class, list of modifier-rich noun

phrases

output: Precision and Recall for modifier ordering predictions
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4.5 Method

4.5.1 Classification Scheme

As discussed above, I assume four primary modifier positions. The longest noun phrases

for this experiment are thus those with five words: Four modifiers followed by a noun. This

assumption fits well with Google’s corpus, whose longest N-Grams are 5-Grams.

four three two one

small smiling white fuzzy bunny

Figure 4.2: Example 5-Gram with Prenominal Positions

The process for determining each modifier’s type is as follows:

• The frequency of each modifier in each position is counted.

• This is turned into a probability over all positions.

• All position probabilities ≤ 0.25 (baseline) are discarded.

• Those positions that remain determine the modifier type.

To calculate modifier position for each phrase, counts were incremented for all feasible

positions. For example, in the phrase clean wooden spoon, the adjective clean was counted

as occurring in positions two, three, and four, while the adjective wooden was counted as

occurring in positions one, two, and three. The classification that emerges after applying

this technique to a large body of data gives rise to the positional preferences of each modifier.

In this way, a modifier with a strict positional preference can emerge as occurring in just

one position; a modifier with a less strict preference can emerge as occurring in three.

Using this system, there are nine derivable modifier types, listed in Table 4.3. The

frequencies of all extracted groupings of prenominal modifiers are shown in Table 4.4. The

frequencies of the extracted types are shown in Table 4.5.
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Table 4.3: Modifier Types

Type 1: one Type 6: two-three

Type 2: two Type 7: three-four

Type 3: three Type 8: one-two-three

Type 4: four Type 9: two-three-four

Type 5: one-two

This table shows that the amount of phrases with four prenominal modifiers is an order

of magnitude higher than phrases with three prenominal modifiers, which is unexpected. On

examination of the data, it becomes clear that the reason for this is these 5-Grams include

lists of nouns, which can be tagged as four modifying nouns followed by a head noun. For

example, Chinese Polish Portuguese Romanian Russian was observed 115 times. This may

be used as a noun preceded by modifiers, but most likely it is a list. That is, the 5-Grams

include many sequences of words in which the final one has a use as a noun and the earlier

ones have uses as adjectives. This speaks to a weakness in using an N-Gram corpus for this

kind of data: N-Grams are isolated from their surrounding context. The rightmost noun in

each N-Gram is not guaranteed to be a head noun, and neither a parser nor a POS tagger

could overcome this problem. However, the sheer amount of information provided by the

corpus may minimize the effects of this noise.

Table 4.4: Frequency of Prenominal Modifier Amounts

Number of Percentage

Prenominal Modifiers Count of Data

two 117416 81.96%

three 2459 01.72%

four 23391 16.33%
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Table 4.5: Modifier Type Distribution

Type Position Count Percentage

1 one 253 03.76%

2 two 185 02.75%

3 three 185 02.75%

4 four 180 02.68%

5 one-two 203 03.02%

6 two-three 1660 24.67%

7 three-four 135 02.01%

8 one-two-three 2002 29.75%

9 two-three-four 1927 28.63%

Modifiers of Type 8, the class for modifiers that show a general preference to be closer

to the head noun but do not have a strict positional preference, make up the largest portion

of the data. This is followed in proportion by modifiers of Type 9, the class for modifiers

that show a general preference to be farther from the head noun, but do not have a strict

positional preference. This reflects the large proportion of phrases extracted with only two

prenominal modifiers.

Examples of Type 8 are golden and cyclical, and examples or Type 9 are ornamental and

copious. With these defined, ornamental golden crown is predicted to sound grammatical,

while ?golden ornamental crown may sound more marked. Copious cyclical patterns is

predicted to sound grammatical, while ?cyclical copious patterns may sound more marked.

Using this classification scheme, positional preferences are learned from the corpora.

Modifiers are assigned to the classes dependent on where they appear. This system is then

used to predict the ordering of modifiers prenominally, given an unordered list corresponding

to modifiers that appear in a given noun phrase. The ordering assumed for each type is

given below. The proposed ordering constraints for these types are listed in Table 4.6.
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Table 4.6: Proposed Modifier Ordering

Type Position Generated Before Type

1 one 2 3 4 5 6 7 8 9

2 two 3 4 6 7 9

3 three 4 7

4 four

5 one-two 2 3 4 6 7 8 9

6 two-three 3 4 7 9

7 three-four 4

8 one-two-three 4 6 7 9

9 two-three-four 4 7

Classification in this way illustrates the idea that some modifiers exhibit stringent or-

dering constraints, while others have more loose constraints. That is, some modifiers may

always appear immediately before the noun, while others may generally appear close to or

far from the noun.

Note that using this classification scheme, the ordering of modifiers that belong to the

same type is not predicted. This seems to be reflective of natural language use: For example,

both domestic and organic are predicted to be Type 6, the type for modifiers that occur in

positions two and three. This seems reasonable: Whether domestic organic beer or organic

domestic beer is a more natural ordering of prenominal modifiers seems at least debatable.

The freedom of intra-type positioning allows for some randomization in the generation of

prenominal modifiers, where other factors may be used to determine the final ordering. This

seems comparable to natural language use.

To test this system, 10-fold cross-validation was used on the extracted N-Gram corpus.

The held-out data was selected as random lines from the corpus, with a list storing the

index of each selected line to ensure no line was selected more than once. In each trial,
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modifier classification was learned from 90% of the data and the types derived were used to

predict the ordering of modifiers prenominally on the remaining 10%.

4.6 Results

In order to test how well the proposed system works, all the modifiers preceding each noun

were stored in unordered groups. All possible orderings were predicted based on the stored

classes of the modifiers. For the baseline, a random ordering was predicted, except between

identical modifiers (e.g., pink and pink), which were grouped together.

In the context of classification tasks, precision and recall measurements provide useful

information of system accuracy. Precision, as defined in (7), is the number of true positives

divided by the number of true positives plus false positives. This is calculated here as tp/(tp

+ fp), where tp is the number orderings that were correctly predicted, and fp is the number

of orderings not correctly predicted. This measure provides information about how accurate

the modifier classification is. Recall, as defined in (8), is the number of true positives divided

by the number of true positives plus false negatives. This is calculated here as tp/(tp +

fn), where tp is the number of orderings that were correctly predicted, and fn is the total

number of orderings that could not be predicted because a modifier was out-of-vocabulary.

This measure provides information about the proportion of modifiers in the training data

whose ordering could be classified.

(10) Precision = tp/(tp + fp)
tp = the number of orderings correctly predicted
fp = the number of orderings not correctly predicted

(11) Recall = tp/(tp + fn)
tp = the number of orderings correctly predicted
fn = the number of orderings that could not be predicted because a modifier was
out-of-vocabulary

The values given are averages over each trial. The standard deviation for each average

is given in parentheses. In the baseline, there are no false negatives, so recall cannot be
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compared. That is, a random ordering is assigned for all modifiers in the test data, and

therefore 100% of the test data is covered. Results are shown in Table 4.7.

Table 4.7: Precision and Recall for Prenominal Modifier Ordering

Type Type Token Token

Precision Recall Precision Recall

System 78.77% (0.45) 98.38% (0.18) 79.23% (2.75) 99.27% (0.12)

Baseline 42.88% (0.32) - 36.31% (4.26) -

On average, 11,121 modifiers were classified in each trial, with only between 150 to 215

modifiers outside of the vocabulary for each trial. The system also produced an average

of 2.3 possible orderings for each collection of prenominal modifiers. This reflects the idea

that a few orderings may be possible for a given grouping of modifiers.

As can be seen, the proposed system works well. With a type precision of 78.77% and a

token precision of 79.23%, most modifiers were correctly ordered prenominally. The recall

scores are even higher, with almost all modifier orderings covered.

4.7 Discussion

The system precision and recall here are striking. With this system in place, perhaps

unknown modifiers could be classified based on the known classification of the surrounding

modifiers, in a lexical acquisition task.

Example:
grey shining metallic chain

three four unknown one two head noun

Given its position and the classes of the surrounding modifiers, unknown could be two three.

Ordering modifiers based on this classification system creates orders seen in natural

language. It follows that a Surface Realization module could use this system to order
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modifiers prenominally. Out-of-vocabulary modifiers may be learned over time, and the

system could default to assuming they are of Type 8 (occuring in position one-two-three),

the largest class.

The usage proposed here is one where generating distinguishing reference utilizes the

modifier classes and modifier mappings to order modifiers that denote absolute properties.

This is the final step in generation, and completes the algorithm introduced in Chapter

3. Describing reference can use this system as well, to order all modifiers that have been

determined.

To complete the schematization of the algorithm for distinguishing reference begun in

Chapter 3, the entire algorithm can be summarized as follows:

System Knowledge Common value representations of referents and their types (volume-

type or surface-type), knowledge of antonyms, mappings between gradable properties

and modifiers, a modifier type system

Inputs A referent vector and contrast vectors

Computation Non-incremental analysis of absolute properties to derive absolute modi-

fiers; incremental analysis of contrast items and their corresponding gradable proper-

ties to derive gradable modifiers; a modifier type system to order absolute modifiers

Outputs Natural sounding referring expressions

Before turning to evaluation of the algorithm, a note on the language dependency of

the prenominal modifier ordering proposed here is necessary. This approach is written

specifically for English, using sources for prenominal modifier ordering from Dutch, German

and English. It is not just Indo-European-centric, but West-Germanic-centric.

According to Greenberg (1963), the majority of languages with dominant VSO order

place adjectives after the noun. Greenberg asserts that the order of lexical items in these

phrases frequently mirrors the order in English, although this is applied specifically to

the order of demonstrative-numeral-adjective, and not to orderings of different kinds of

adjectives. It may be the case that these phrases mirror English order, such that gradable
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adjectives still appear farther from the head noun, and as such are generated after the

absolute adjectives.

The computational model developed in this thesis still works in this case, but obviously,

the referring expression structure would need to be mirrored to reflect the different ordering.

However, if phrases are found (in English or in other languages) where gradable modifiers

appear closer to the head noun than absolute modifiers, then it may be the case that the

two kinds of modifiers are not as distinct as this algorithm proposes. In this case, more

work is necessary to advance generation for natural reference in other languages.
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Chapter 5

EVALUATION

5.1 Introduction

This chapter presents the evaluation of the algorithm proposed in Chapter 3. Section 5.2

addresses the goals of the algorithm, and so motivates the evaluation here. Section 5.3

reviews the materials used. Section 5.4 outlines the method. Section 5.5 presents the

results from the evaluation, and compares these to results from the Incremental Algorithm

on the same task. I follow the approach taken in Viethen and Dale (2006), and calculate

only recall for the algorithm. This is necessary given the free-form nature of the evaluation

task, which precludes calculating precision. Section 5.6 discusses the significance of the

results and areas for further improvement.

5.2 Purpose

The algorithm introduced in this thesis implements a strategy for producing referring ex-

pressions similar to those that humans produce. As discussed in previous chapters, the

algorithm has been constructed using the evidence on how people process information and

the final expressions they produce. These ideas are implemented by initially storing abso-

lute properties, incrementally analyzing gradable properties, and only selecting particular

kinds of properties for the final referring expression. The expected result from this is the

production of referring expressions identical to those found in natural language, given the

same input domain.

If the algorithm does produce natural distinguishing reference, then it will be able to

generate most of the referring expressions found in natural language for a distinguishing

reference elicitation task. The following sections show that this is in fact true.
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5.3 Materials

Stimuli. Subjects were presented with graphical depictions of people, animals, and ob-

jects. Some were presented as drawings, and some were presented as photographs.

The pictures were composed of two or more entities, where each had at least two

distinct properties.

Presentation of stimuli. Four web pages were designed to display the stimuli, with

five pictures presented per page, yielding a total of 20 pictures. Each picture was

presented with a sentence below, where noun phrases were replaced by text boxes to

guide the intended referent. For example, “ is on the left side and is on

the right side”. The blanks here represent writable text boxes. Each picture was used

to elicit between 1 and 3 referring expressions.

Delivery of stimuli. Amazon’s Mechanical Turk (Amazon, 2008) program was used to

run the evaluation. This program is web-based, where users can choose to take a

variety of tests for minimal reward. A screenshot of this test is available in Appendix

D. The test was presented on the web site with my name, the expiration date of the

test, the time allotted, and the reward for each test ($0.01). Due to the nature of the

Mechanical Turk program, users are anonymous. Each test was programmed to close

after one hour, and a timer in the upper left corner notified subjects of their progress.

Subjects were instructed to help identify the objects in the pictures by typing into the

text boxes. A “Submit” button was placed at the bottom of each page, and so results

were submitted for every five pictures.

All pictures from this test are available in Appendix A.

5.4 Method

5.4.1 Elicitation

A total of 41 referring expressions were elicited from 70 participants, yielding 2,870 individ-

ual referring expressions. From this, all expressions for reference to objects were extracted,
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yielding 28 referents and 1,960 speaker responses.

A pilot study with no instructions returned results where subjects did not fully complete

sentences. For example, red was supplied in a slot where the red lantern would have made

the sentence grammatical. Based on this, the instructions were written asking subjects to

“Help identify the objects, people, and animals. Fill in the blanks as if reading a story book

to a five-year old. Please be descriptive and clear.” The decision to ask people to fill in

blanks as if reading to a child was to control for intended audience and to inconspicuously

avoid free-form vulgarity that may arise from anonymity; this move, however, yielded many

descriptions that were unexpected (Daddy’s boots and the pretty lady).

Once the results were in, typos were corrected and spelling was normalized.1 The data

was analyzed and counts for every word were collected, as well as counts for every phrase.

5.4.2 Filtering

Two referents in the test are sets, and so were not included in the evaluation (the bags in Cell

8 of Appendix A and the yellow boots in Cell 9 of Appendix A). A minority of the elicited

expressions have syntax not covered by either algorithm: embedded prepositional phrases

and relative clauses. These were excluded as well. Two possessive phrases were also found,

and excluded. The expressions that were filtered do not bias the data towards my own

algorithm; neither the proposed algorithm nor the Incremental Algorithm was developed to

generate these kinds of linguistic phenomena.

Once analysis started, it became clear that three more images had not made the intended

referents clear; these results were also excluded from the study. Reference to the wrong

entity (e.g., to something else in the scene) were also discarded. These steps produced a

final test set of 19 referents, with 1,162 individual referring expressions.

5.4.3 Calculation

The elicited human expressions displayed a wide variety of values, and a wide variety of

selected properties. For example, some people described a ball as red while others described

1E.g., multi coloured became multi-colored, while multi color became multi-color.
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it as orange (see Table 5.3). This kind of variation presents a problem for calculating recall:

With red provided as input to the algorithm, no expressions with orange can be predicted

by the algorithm, even if the expression contains the exact same attributes.

Because both the algorithm proposed in this thesis and the Incremental Algorithm are

not concerned with the choice of value, but rather the choice of attribute, and rely on

system information to guide the form the final generated expression takes, it was decided

that recall was best calculated by extracting those expressions that met the constraints of

the algorithms and therefore can be produced by them. That is, it was decided that recall

was best calculated by analyzing each expression by hand. I will refer to this as a per

expression analysis.

Extracting only those expressions that meet the constraints of each algorithm allows for

different values of the same attribute (for example red or orange for color), and provides

the flexibility to account for expressions with different forms due to the selection of head

noun and modifiers with differential discriminatory power (this is particularly true of the

Incremental Algorithm). Minimizing bias in the analysis of each expression, either by an

automated approach or by hand, requires detailed procedures for each algorithm. I will

now address the reasons for this kind of analysis in detail and outline the steps taken to

minimize bias in the evaluation.

Return to the example of Table 5.3. The algorithm proposed in this thesis can generate

the observed expressions orange ball and orange toy, but cannot generate the expression ball.

This is due to the different possible values for the head noun in input, and the requirement

that a value for color be included as long as that value is not definitive of the head

noun. The proposed algorithm can also generate red spiked ball and spiky red ball,2 but

each of these expressions depend on different input values. To generate orange ball, the

input referent vector must contain the head noun ball (as well as the attribute-value pair

color:‘orange’); to generate orange toy, the input referent vector must contain the head

noun toy; to generate red spiked ball, the input referent vector must contain the head noun

2Using the type system introduced in Chapter 4, these exact orderings are predicted as well: red and
spiked are both Type 6, tending to occur in position two-three, while spiky is Type 4, tending to occur in
position four.
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ball along with the attribute-value pairs color:‘red’ and shape:‘spiked’; to generate spiky

red ball, the input referent vector must contain the head noun ball along with the attribute-

value pairs color:‘red’ and shape:‘spiky’. Constructing input vectors in order to test

whether each observed referring expression is generatable by the algorithm requires tailoring

inputs to reflect my own interpretation of what each vector would have to look like to produce

the observed expression. This is not only messy, but prone to the very same biases that a

more automated procedure would ideally avoid.

Evaluating the Incremental Algorithm makes the reason for a per expression approach

even more clear. The Incremental Algorithm cannot generate the expression orange ball,

but can successfully generate the expressions ball and orange toy. This is due to the different

possible values for preferred head noun, user knowledge, basic level values, and more specific

values that are dependent on the system, not the functions of the Incremental Algorithm.

If the input to the Incremental Algorithm includes information that both the ball and the

surfboard should have the head noun of toy – for the Incremental Algorithm this head noun

is derived from an input attribute-value pair type:‘toy’ – the algorithm can determine that

this word toy is the correct output and orange is an appropriate discriminating color value

by its balancing of what the system lists as more specific and known by the user with the

discriminatory power of the head noun’s specificity.

There is a clear solution to this problem. Both algorithms produce expressions that obey

a coherent set of rules. The way each expression is derived depends heavily on the system

(particularly for the Incremental Algorithm) and the input, but the final expression itself

will adhere to a very small set of core constraints. It follows that extracting those expressions

that obey the coherent set of rules is an effective way of judging the recall of each algorithm.

This gets rid of the complication of fabricating what the system preferences would be (a

task that is inherently biased) or how the inputs would look (which would require contriving

many different inputs to conform to each observed expression).

The two systems were therefore evaluated against the same set of human-generated

expressions, produced for the pictures shown in Appendix A. They were judged on a per

expression basis, meaning each expression was determined to be either predicted by or not
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predicted by each algorithm. The two algorithms generate expressions obeying different

constraints, and adherence to these constraints determined whether each expression was

counted as predicted by each algorithm or not. I will now discuss the constraints for each

algorithm.

The Incremental Algorithm generates referring expressions where the head noun may

and each modifier moving outwards from the head noun must rule out at least one member

of the contrast set. With this, each value (where value corresponds to the head noun and

modifiers) rules out at least one member that has not yet been ruled out by an earlier value.

The head noun is the only exception to this rule; it may not rule out any item in the contrast

set when each item has the same head noun. Because the Incremental Algorithm finishes

when all contrast items have been ruled out, the final expression must rule out all members

of the contrast set. Referring expressions in the data that met this criteria were calculated

as being predicted by the Incremental Algorithm. A listing of these constraints is given in

Table 5.1.

The proposed algorithm generates referring expressions that have three or fewer modifiers

attached to the head noun. Those closer to the head noun convey absolute properties, while

those farther from the head noun convey gradable properties, here instantiated as size

values. There is a separation between these two kinds of values, such that there is no

absolute modifier farther from the head noun than any gradable modifier. Further, the only

gradable modifiers allowed are those that can be derived from comparison with an item of

the same type (volume-type or surface-type) in the contrast set (including the common-

value form of the intended referent). Where the contrast set contains an item that can

be referred to with the same head noun as the intended referent, but differs in size, a size

adjective in comparative form is allowed. Referring expressions in the data that met this

criteria were calculated as being predicted by the proposed algorithm. A listing of these

constraints is given in Table 5.2.

For the proposed algorithm, analyzing the data in this way provides for different possible

inputs and common values, as deciding what the input is and what is common is beyond the

scope of the algorithm and determined or provided by the system. For the Incremental Al-
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Table 5.1: Incremental Algorithm Constraints

• Head noun may rule out at least one

member of the contrast set.

• Each modifier moving outwards from

the head noun rules out at least one

member of the contrast set.

• No modifier only rules out members of

the contrast set that are already ruled

out by the head noun or modifiers closer

to the head noun.

• The modifiers and head noun of the

full referring expression together form a

uniquely distinguishing expression, rul-

ing out all members of the contrast set.

Table 5.2: Proposed Algorithm Constraints

• No more than three prenominal modi-

fiers.

• No absolute modifier is farther from the

head noun than any gradable modifier.

• Each gradable modifier is derivable from

comparison with an item in the contrast

set that is of the same type.

• If there is a gradable modifier in com-

parative form, the head noun of the in-

tended referent must also apply to an

item in the contrast set from which the

gradable modifier is derivable.

• A color modifier is included unless it is

definitive of the head noun.

• A gradable modifier is included if it is

derivable and the phrase contains no

color modifier or the phrase contains

more than one modifier.
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Table 5.3: Natural Variation in Referring Expression Choice

Referring Expression Count Referring Expression Count

red ball 13 orange ball 12
ball 6 orange bumpy ball 3
red spiked ball 2 squishy ball 2
red dimpled ball 1 spiky red ball 2
spiked texture orange ball 1 rubber ball 1
red spikey ball 1 bumpy red ball 1
knobbly ball 1 knobby orange ball 1
rubber bumpy ball 1 spiked orange ball 1
orange plastic dryer ball 1 red sticky ball 1
round red ball 1 orange rubber ball 1
red spike ball 1 bumpy ball 1
orange nubby ball 1 orange dryer ball 1
bright red ball 1 spiky ball 1
stress ball 1 dog toy ball 1
orange dog toy 2 toy 1
orange toy 1 orange pet toy 1
orange globe 1 dog toy 1

gorithm, this allows for a variety of different results from BasicLevelValue, MoreSpecificValue,

UserKnows, and the input PreferredAttributes (see Figure 2.2). This flexibility is crucial, as

it allows the generation capabilities of the algorithms to be calculated in isolation from the

decisions outside of their scope.

5.5 Results

5.5.1 Recall

The token recall score for the algorithm is 71.26%, capable of generating 828 of the 1,162

observed referring expressions. Running the absolute modifiers through the type system

introduced in Chapter 4, where out-of-vocabulary items are predicted to be Type 8, lowers

this number to 783 (a token recall of 67.38%). The Incremental Algorithm received a recall

score of just 53.70%.
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Table 5.4: Algorithm Results

Proposed Algorithm Incremental Algorithm

Recall 71.26% 53.70%

The algorithm proposed in this thesis is capable of generating the majority of distin-

guishing reference found. Such a high recall, given the range of objects presented and

referring expressions elicited from people, shows that this algorithm can generate natural

reference. If embedded in a generation system, it will successfully aid in creating natural

sounding language.

The fact that the recall of the proposed algorithm is higher than the Incremental Al-

gorithm means that it performs better at generating natural expressions. The Incremental

Algorithm, of course, was not designed explicitly to generate natural reference, but to

uniquely identify referents. The observed difference in the recall of the two algorithms is

therefore expected.

These results are promising, but may be improved. The data do show some consistent

expressions that were not predicted. I now turn to a discussion of these expressions and

how the algorithm can be enhanced.

5.6 Discussion

As discussed above, users of the Mechanical Turk program are anonymous. Therefore, one

drawback of this approach is that I have very little information about the participants, and

so may have collected data from non-native speakers as well as native speakers. However,

this does not appear to have created any problems.

5.6.1 Error Analysis

The expressions not predicted by the algorithm follow several clear patterns. They can

be classified as not including a color value; containing more than one modifier but not

including a size value; and exhibiting an ordering where an absolute modifier appears
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farther from the head noun than a gradable modifier. I will now discuss each of these errors

in detail.

The algorithm mandates that color be included in all expressions, as long as the color

is not a common-value for the head noun, and yet, many referring expressions did not

include a value for color at all. This was particularly true for the generation of reference

to items with patterns of color variation. For example, many people referred to a checkered

black-and-white cap (shown in cell 8 of Appendix A) as checkered, with no given color value.

Others referred to it just with the head noun. Similarly, a striped gold-and-silver ribbon

(shown in cell 6 of Appendix A) was often referred to as striped, without a color specification.

Removing just these two referents increases the recall by over 6%. Solving how to handle

the interplay between color variation, patterns, and plain colors would greatly add to the

abilities of this algorithm.

Another common phenomenon not predicted by the algorithm was the lack of a value

for size when more than one modifier appeared. For example, shiny silver lantern and

lavender rubber boots were phrases observed in the data. The algorithm predicts that if two

modifiers appear, one of them will be a size value. It may be argued that shiny silver is

itself a color value, and rubber boots is a compound noun that is itself the head noun, but

I did not make these kinds of assumptions in calculating recall.

The third phenomenon not predicted by the algorithm was the appearance of modifier

orderings that run contrary to Behaghel’s law. For example, blue tall trophy and blue long

surfboard were observed. I am not sure how best to account for this kind of phenomena, but

assume that the relatively low frequency of these kinds of orderings merits treating them

as outliers. These kinds of responses may be a result of the possible inclusion of non-native

speakers, however, similar switching of modifiers has been reported in many other studies

(cf. Danks and Glucksberg, 1971; Pechmann, 1989).

5.6.2 Extensions to the Algorithm

Further work on this algorithm involves solving how common values of referents can best

be incorporated. A knowledge base drawing from Prototype Theory (Rosch et al., 1976),
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where descriptors for a referent are drawn from class membership of that referent to a fuzzy

set (see Lakoff, 1973 for more details on this approach), may aid in improving the algorithm

in this way.

This algorithm is also only designed to generate reference to objects presented visually.

To extend this approach to other kinds of reference, more work needs to be done to deter-

mine the properties involved in each. For example, to extend this algorithm to a non-visual

presentation task, the form of the gradable properties used would need to be addressed (for

the generation of adjectives such as heavy or soft). To extend this algorithm to reference to

people, values for hair and eye color may play a more prominent role than color itself (un-

less the person is green). This may motivate a slightly different approach for distinguishing

reference to people, although the basic structure of the algorithm could remain the same.
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Chapter 6

CONCLUSIONS

This thesis has explored generating two kinds of reference: distinguishing reference and

describing reference. The approach developed for generating distinguishing reference is one

that draws heavily from work in psycholinguistic research. The algorithm developed for

the generation of distinguishing reference appears to produce results comparable to those

produced by humans. The modifier type system introduced for surface realization of both

kinds of reference provides a way to order modifiers prenominally, and so generate natural

reference for any noun phrase preceded by modifiers.

This work has shown that there are two main kinds of properties that people use to

identify items. Absolute properties tend to be included regardless of their power to uniquely

identify a referent, while gradable properties are derived from comparison processes with

other items in the contrast set. If a scene is parsed with a separation between the two

properties, the differential treatment of each helps guide the generation of natural sounding

referring expressions.

To order the modifiers derived from these properties, using a modifier type system has

been shown to be extremely effective. Defining general modifier types, and deriving prenom-

inal modifier ordering from these types, can result in well-formed, natural expressions. This

allows a greater level of automation in natural language generation, where modifiers no

longer must be individually ordered. Instead, by incorporating a knowledge base of modi-

fier types, individual modifier ordering can be decided by the system.

Further work should focus on refining the algorithm, and expanding it to include gen-

eration capabilities for all kinds of reference. In particular, exploring the factors at play in

the representation of the contrast set would strengthen the algorithm’s ability to generate

the gradable modifiers identical to those produced by people. Incorporating domain knowl-

edge into the algorithm would further add to its ability to generate natural utterances for
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a variety of tasks.

The main idea that has emerged from this study is that current incremental approaches

to generating natural language do not quite capture naturalness. The system proposed here

draws on evidence from a variety of sources and is capable of generating language that is

quite similar to that produced by humans. Other algorithms may work best for goal-driven

tasks, or be more computationally efficient. However, for the task of generating natural

language, the approach introduced here is shown to be extremely effective.
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Appendix A

PICTURES FROM EVALUATION
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Appendix B

FILTERED MODIFIERS FOR THE MODIFIER CLASSIFICATION

SYSTEM

Table B.1: Filtered Modifiers in Modifier Type System

a b c d e f

g h i j k l

m n o p q r

s t u v w x

y z in on up above

before after during most more much

each every all some few any

only many other very such well

no pussy like said just cd

cl il cc cd
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Appendix C

CONTRAST SET MAPPINGS

Table C.1: Example Contrast Set Properties: Size Relations and Corresponding Adjectives

Contains Relations Generates

taller than tall
longer than long
wider than wide | fat

shorter than short
thinner than thin

less wide than thin
taller than thinner than tall thin
longer than thinner than long thin

longer than less wide than long thin
taller than less wide than tall thin

taller than longer than large | big
taller than wider than large | big
longer than wider than large | big

shorter than thinner than small | little
shorter than less wide than small | little
thinner than less wide than small | little

taller than longer than wider than large | big
thinner than less wide than shorter than small | little

Surface-type taller than large | big
mappings longer than large | big

wider than large | big
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Appendix D

MECHANICAL TURK

Figure D.1: Mechanical Turk: Screenshot


